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ABSTRACT

In this work, we present Solar Feature Tracking, a novel feature-tracking tool developed in Python and designed to detect, identify,
and track magnetic elements in the solar atmosphere. It relies on a watershed segmentation algorithm to effectively detect magnetic
clumps within magnetograms, which are then associated across successive frames to follow the motion of magnetic structures in the
photosphere. Here, we study its reliability in detecting and tracking features under different noise conditions starting with real-world
data observed with SDO/HMI and followed with simulation data obtained from the Bifrost numerical code to better replicate the
movements and shape of actual magnetic structures observed in the Sun’s atmosphere within a controlled noise environment.
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1. Introduction

In the past decades, feature tracking algorithms have been used
in solar physics to investigate the dynamics of both magnetic
and non-magnetic structures within the solar atmosphere for
various scientific objectives. Many authors have employed dif-
ferent tracking techniques to study the emergence and diffusion
processes of small-scale magnetic structures in the solar pho-
tosphere (e.g. Nisenson et al. 2003; Abramenko et al. 2011;
Giannattasio et al. 2013, 2014; Jafarzadeh et al. 2014; Lamb et al.
2014; Jafarzadeh et al. 2017), their oscillations through the differ-
ent layers of the Sun atmosphere (Morton et al. 2013; Stangalini
et al. 2013; Berberyan et al. 2024), and their statistical proper-
ties (Parnell et al. 2009; Keys et al. 2011; Huang et al. 2012;
Keys et al. 2019). In addition, feature tracking codes have been
employed for the detection of granules in the photosphere to
study their statistical properties and dynamics (see November &
Simon 1988; Title et al. 1989; Duvall et al. 1997; Strous et al.
2000; Berrilli et al. 2002). Finally, these tools have also been
used to link the onset of space weather events, such as solar
flares, with changes in the magnetic field topology and hori-
zontal velocity flows at different layers of the solar atmosphere
(Wang 1992; Anwar et al. 1993; Wang 2006; Wang & Liu 2010;
Higgins et al. 2011; Liu et al. 2012; Alvarado-G6émez et al. 2012;
Wang et al. 2018; Liu et al. 2023, to name a few).

Over the years, many tracking codes have been developed
by the community that are custom-made for each specific need.
In November & Simon (1988) the authors first proposed fea-
ture tracking in solar physics to study the proper motion of solar
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granulation through the introduction of local correlation tracking
(LCT). LCT works by detecting displacements that maximise
the spatially localised cross-correlation between tracers in two
images. In Schuck (2005), the author presented a revised version
of the method to account for the magnetic induction equa-
tion, improving its reliability in tracking photospheric magnetic
footpoints. Finally, in Fisher & Welsch (2008), the authors intro-
duced a faster and more efficient method for LCT based on
the Fourier transform. An analysis of the limitations of LCT
can be found in Potts et al. (2003). Alternatively, the multiple
level tracking (MLT) algorithm, introduced in Bovelet & Wiehr
(2001) as an improvement over the previously commonly used
Fourier filtering methods (Roudier & Muller 1986; Hirzberger
et al. 1997), is a threshold discriminator acting on multiple inten-
sity levels to better define the contours of the detected structures.
Since then, it has been modified in Fischer et al. (2019) to study
the emergence of a small-scale magnetic flux sheet.

In Welsch & Longcope (2003), the authors introduced yet
another feature tracking algorithm (YAFTA), an IDL tracking
routine that detects clumps of magnetic pixels with a flux-
ranked, downhill labelling algorithm and matches them exploit-
ing overlapping pixels between successive frames. Later, in
DeForest et al. (2007), the southwest automatic magnetic identi-
fication routine (SWAMIS) was introduced. The SWAMIS suite
is a set of PERL routines that work together to detect and track
magnetic features. Unlike YAFTA, it uses hysteresis in both
space and time to further boost the confidence in the detected
elements. It has been used in a large number of publications
related to the dynamics of magnetic field concentrations in the
Sun’s atmosphere (e.g. Meyer et al. 2013; Regnier 2013; Lamb
et al. 2014, 2016; Gosi¢ et al. 2018; Berretti et al. 2024, to
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name a few examples) and can be considered as being at the
forefront of tracking algorithms for use with observations of
the lower solar atmosphere. Furthermore, Kianfar et al. (2018)
employed a method for detecting and tracking linear polarisation
features (LPFs) in the solar photosphere, based on an algorithm
developed by Jafarzadeh et al. (2013, 2015). Their approach
involves first identifying contiguous pixels above a signal thresh-
old in linear polarisation maps using a blob analyser algorithm.
This algorithm identifies and characterises individual features
based on their pixel connectivity and properties. Then, the cen-
tre of gravity of each identified feature is tracked in subsequent
frames to determine properties such as lifetime and velocity. This
technique has been successfully applied to study the dynam-
ics and evolution of LPFs, contributing to our understanding of
small-scale magnetic structures in the lower solar atmosphere.

Similar tools, but with different scientific objectives, are
CURV (Hagenaar et al. 1999) and MCAT (Parnell 2002). In
Keys et al. (2019), the authors studied the magnetic properties of
bright points in the photosphere by tracking bright features using
a custom intensity thresholding tracking algorithm and estimated
the physical properties of the observed structures. Finally, many
other tracking codes have been released that introduce deep
learning or novel data manipulation to improve tracking relia-
bility and performance, including the works of Asensio Ramos
et al. (2017), Jiang et al. (2020), Potts et al. (2004), and Attie &
Innes (2015). While a thorough review is beyond the scope of the
current investigation, further details on the mentioned tracking
codes can be accessed via their respective publications.

While many of these tracking codes can be accessed freely
and are still functional, they often require paid-for software
licences and/or do not make use of modern programming lan-
guages that are readily used by the modern community. Here,
we present a novel feature tracking tool, SoFT, built in Python
with reliable detection and fast associations at its core. Based
on a watershed segmentation algorithm, it effectively detects the
boundaries of the magnetic structures that are subsequently asso-
ciated by checking the maximum overlapping features between
successive frames. In this work, our aim is to showcase the
capabilities of our tracking code with a sample series of mag-
netograms captured by the Helioseismic and Magnetic Imager
(HMI; Scherrer et al. 2012) onboard the Solar Dynamics Obser-
vatory (SDO; Pesnell et al. 2012). Moreover, we provide a study
on the reliability of the tool under different noise conditions
using simulated magnetic structures obtained from the Bifrost
code (Gudiksen et al. 2011).

2. Methodology

The Solar Feature Tracking (SoFT) algorithm can be divided
into three main phases. Initially, it detects and identifies mag-
netic elements according to the input parameters provided by the
user. Following detection, the corresponding features in subse-
quent frames are associated with one another. Finally, in the last
phase, it estimates the position, flux, and area of the detected fea-
tures. Each phase can be parallelised across multiple CPU cores,
significantly reducing the code’s execution time.

2.1. Detection and Identification: The watershed algorithm

The detection process starts by masking pixels below a given
threshold (1_thr) which is determined based on the noise level in
the data. It is common practice to consider a threshold equal to
three times the noise level (i.e. 307) to ensure high confidence in

AT71, page 2 of 7

the detected structures (e.g., similar to the feature thresholding
used in Jess et al. 2019). However, this could potentially result
in the loss of many of the fainter magnetic structures. Addi-
tional constraints such as the lifetime and size of the detected
elements can drastically improve the detection confidence. These
constraints can potentially allow one to lower the threshold
depending on the signal-to-noise ratio of the instrument, hence
increasing sensitivity without losing accuracy. However, it is
important to note that lowering the threshold value could result
in suboptimal detection of feature boundaries. We recommend
testing different thresholds on the data to determine the optimal
value.

For magnetograms, the standard deviation of polarisation
signal in continuum position ideally defines this noise level.
However, it is not always available, and a reasonable estimate can
be obtained from the average value of the standard deviation in
quieter regions of the field of view (FoV) of a polarisation image
(e.g., a magnetogram). The main drawbacks of this approach are
(i) the overestimation of the real polarimetric noise, and (ii) the
requirement to perform this operation manually on a single frame
rather than automatically for all images in the dataset.

The next step is to find the local maxima in the masked
images. Each peak must be separated by at least min_distance
pixels to prevent fragmentation of a single magnetic structure.
The parameter min_distance can be defined by the user based on
the expected size of the magnetic structures to be detected,for
instance, through inspection or a-priory knowledge (e.g., Berger
& Title 2001; de Wijn et al. 2008; Crockett et al. 2009; Utz et al.
2009; Jess et al. 2012; Riethmiiller et al. 2014).

Then, we computed the Euclidean distance transform (EDT)
of all the masked images in the data set. This process replaces
every nonzero pixel with the distance to the closest background
pixel (i.e. zero-valued). If the pixels are already part of the back-
ground, then this distance value is zero. The result of this process
is a distance map which provides an approximate gradient field
of the image and is used to ensure proper separation of the
magnetic structures with the watershed segmentation.

Finally, the watershed segmentation algorithm is applied to
the EDT maps. The previously identified local maxima are used
as the initial points from which the watershed algorithm will start
flooding the basins, growing regions by following the gradient
descent path until a watershed line or a boundary is encountered.
The result is a segmented image in which each region corre-
sponds to a distinct magnetic structure. Each detected clump is
associated with a unique label and the structures below a given
minimum size (m_size), defined by the user, are filtered out. In
the top panel of Fig. 1 we show an example of the elements
detected by SoFT in a small FoV in a magnetogram provided by
SDO/HMI. Each frame can be assigned to a separate core from
the available CPU pool, allowing parallel execution.

In addition to the primary detection procedure, SoFT
includes a coarser detection technique that bypasses the dis-
tance transform, thus clustering nearby magnetic structures of
the same polarity. Its results are shown in the bottom panel of
Fig. 1. These two methods are referred to as ‘fine’ and ‘coarse’,
and the user can select one by using the boolean separation flag.

2.2. Tracking

Once the features have been identified, they need to be matched
from one frame to the next. Following similar tracking codes,
such as YAFTA and SWAMIS, we check the overlap between
feature M in frame n (denoted as M(n)) and all the features in
frame n+1 that occupy the same pixels as M(n). Among these,
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Fig. 1. Small crop of the FoV considered in this work. The user param-
eters chosen are: 1_thr = 12 G, min_distance = 3 pixels, and m_size =
4 pixels. The boundaries of the detected features have been highlighted
using differently colored contours, respectively blue and red for the pos-
itive and negative polarities. The top panel displays the results of the
coarse detection method, where nearby magnetic elements of the same
polarity tend to be clustered together. The bottom panel, on the other
hand, shows the results of the identification step using the finer detec-
tion method, which considers each local maxima detected as a single
feature.

the feature with the largest overlap is selected as the candidate
match for M(n+1). Once the best guess for M(n+1) is chosen,
we repeat the same process backwards and check the overlap
between the candidate feature M in frame n+1 and all the fea-
tures in frame n that occupy the same pixels. If the two features,
M(n) and M(n+1), select each other, they are considered matched
successfully. This is a successful association and a common label
is assigned to both (for convenience, the label of the feature on
the frame n is passed to the matched feature on the frame n+1).

It is important to mention that this tracking method heav-
ily relies on the overlap between same features in subsequent
frames. In some cases, an unfortunate combination of temporal
cadence of the instrument, its resolution, and the expected size of
the features to track, might lead to an improper association, as the
features would not overlap. Therefore, it is suggested to review
the properties of the instrument against a-priori knowledge of
the dynamical and morphological properties of the features to be
tracked.

This phase is divided into rounds. Initially, frames are paired
and associated two by two, and each pair is condensed into a sin-
gle unit called a cube (e.g., at the second round each cube will

be composed by four consistently labeled stacked frames) . In the
following rounds, we focus on the last frame of the lower cube
and the first frame of the upper cube. The relabeling from this
association is then propagated to all the frames within the respec-
tive cubes. This method continues to extend progressively until
only one cube remains, containing all frames with features asso-
ciated properly. This process allows the algorithm to spread the
workload across all available CPU cores as each cube is assigned
to one of the available cores, drastically reducing the running
time of the code.

2.3. Tabulation

Once the magnetic structures have been successfully detected,
identified and associated, we can estimate their physical proper-
ties. The positions of the magnetic elements in each frame are
obtained by calculating their barycenter, which is obtained by
averaging the coordinates of each pixel belonging to a feature
weighted by their intensity (i.e., centre of gravity of intensity).
This approach provides sub-pixel accuracy on the estimated
positions of the detected clumps. The area of each element is
measured by counting the pixels within its contour, while the
total magnetic flux is measured by summing the intensity of the
pixels. Finally, the velocity of the horizontal displacements of
the features is estimated by performing the first-order derivative
of the positions of the barycenter.

The final output of the SoFT code is a “pandas DataFrame”
data structure, exported as a JSON file, providing the following
quantities for each of the tracked features:

— Label: the unique label assigned to the detected feature dur-
ing the identification and association process. This label
allows for easy reference to specific features in the mask
images produced by the tracking code.

— Lifetime: the duration of the tracked feature.

— X and Y: arrays containing the positions of the barycentre of
the detected structure in each frame.

— Area: array containing the number of pixels inside the
contour in each frame.

— Flux: array containing the mean value intensity of pixels
inside the contour at each frame.

— Frames: the frames in which the selected features appear.

— V. and V. arrays containing the two components of the
horizontal velocity.

— oy, and oy, the standard deviation (o) of both components
of the horizontal velocity, referring to the entire velocity
series.

— Line-of-sight velocity: if Dopplergrams are available, this
provides an array of the mean pixel intensity inside the
contour for each Dopplergram frame.

In addition to the dataframe, the code also saves the masks pro-
duced at each step. The total storage required for the output,
including both the dataframe and the masks, is approximately
four times the size of the input dataset.

2.4. Large-scale magnetic structures

Although SoFT was originally designed to track small-scale
magnetic structures in the photosphere with typical equivalent
diameters ranging from 300 to 1500 km, it has also been opti-
mised with a dedicated workflow for the detection and tracking
of much larger features such as sunspots in the photosphere.
Additionally, SoFT can also be used to track features in the upper
layers of the Sun’s atmosphere (e.g., coronal holes in the corona).
The main differences here lie in the detection algorithm, as the
other phases remain untouched.
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Fig. 2. Time series of physical observables obtained from the SoFT tracking code using the finer detection method for three randomly selected
elements within the dataset. These plots show the evolution over time of key physical parameters of the magnetic structures, such as magnetic
flux, area, horizontal velocity in both x and y directions, and their positions in pixel coordinates. The time series are adjusted to a zero mean and
scaled by their respective standard deviations to improve visualisation and the value of o is reported in the legend. Units of measure of the standard
deviations are Gauss for flux, pixels2 for area, km/s for velocities, and pixels for positions.

Indeed, when working with larger structures, we want to
avoid as much as possible the unwanted splitting of a single fea-
ture given by the presence of multiple local maxima in it. In order
to do that, the sunspot workflow in SoFT uses a modified version
of the detection phase that bypasses the Euclidean distance trans-
form and watershed segmentation, in favour of a much simpler
threshold discriminator.

3. Dataset

To showcase the results of our tracking suite, we selected magne-
tograms acquired by SDO/HMI in the Fe 1 617.3 nm absorption
line with a cadence of 45 seconds on 16 April 2020, starting
at 00:30 UTC for 45 minutes over a 200 x 200 square arcsec-
onds region at the centre of the solar disk. The different frames
have been coregistered with one another in order to obtain a
fixed FoV and remove contributions of the solar rotation from
the horizontal displacements of the tracked elements.

We selected the threshold as previously described and opted
for 1_thr= 20~ above the noise. The value of 1_thr was estimated
considering a 5 x 5 pixel? subregion where no magnetic activity
is present and was found to be equal to =6 G. This threshold
would imply a confidence of around 95% for features exceeding
this value. However, further constraints on the minimum size of
the detected structures (more than 4 pixels) and on their lifetime
(more than four time steps, i.e. 180 seconds) ensure an higher
confidence level.

To study the performance of the SoFT code under different
noise conditions in a controlled environment, we used data from
Bifrost simulations. To this end, we have selected magnetic-field
maps corresponding to a geometric height of 100 km in the origi-
nal simulation box. The simulations used in this work reproduce
the behaviour of the photosphere below a coronal hole region,
representing the quiet Sun. This simulation encompasses a
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three-dimensional space of 768 points in each direction (x, y,
and z). Horizontally, this spans 24 Mm, while vertically it covers
16.8 Mm. To mimic the Sun’s activity, a slow inflow of horizon-
tal magnetic field is introduced at the bottom boundary of the
simulation, positioned 2.5 Mm below the visible solar surface.
We considered a small crop of 1240 x 1240 square kilometres
with a pixel size of 31 km and a temporal cadence of 10 seconds.
For more details about the simulation, we refer to the simula-
tion run with the identity code ch024031_by200bz005, which
is also used and described in De Pontieu et al. (2021)
and Silva et al. (2024).

4. Results and discussion

In this section, we present the results of the tracking suite under
different conditions. First, we show the performance of the algo-
rithm in a normal use case by tracking magnetic structures in
magnetograms captured by SDO/HMI. Then, to understand the
performance of our tool and estimate its reliability under differ-
ent noise scenarios, we show the result of the tracking code using
simulation data with increasing levels of added noise.

4.1. Tracking accuracy in real-world conditions

Figure 1 shows the result of the detection and identification step
on a small subset of the FoV considered in this test analysis, with
both the coarse (top) and fine (bottom) approaches documented.
Both approaches identify the same outer contours for most of the
features. However, the fine approach, as intended, further distin-
guishes and splits the detected elements in order to identify each
separate bundle of magnetic field.

For each of the identified magnetic elements in the FoV,
the tracking code provides its magnetic flux, area, velocities,
and positions in pixel coordinates with respect to the FoV over
each frame. In Fig. 2, we show the time series obtained for
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three randomly selected elements in the data set. These time
series highlight the reliability and continuity of the tracking
code, which is capable of tracking the evolution over time of key
physical parameters of the magnetic structures in the lower solar
atmosphere. Finally, in Appendix A we show the statistical dis-
tributions of the physical parameters inferred from the tracking
suite.

4.2. Tracking accuracy estimation in controlled conditions

Establishing a validation pipeline for such a feature detection
and tracking tool is a nontrivial task. Indeed, in real use cases,
there is no ground truth available to compare the results of the
tracking code with. To address this, we tracked features in both
modelled and simulated data with no noise. Then, by introduc-
ing a controlled amount of noise and repeating the analysis, we
can evaluate how the tracking code performs under different
conditions.

First, we tracked the movement of a uniform circular element
with a radius of 5 pixels performing a random walk on a blank
canvas of 50 x 50 pixels with an added Gaussian random noise
with o equal to 25% the maximum pixel intensity in the image.
The mean difference between the actual trajectory of the ball
and the one inferred by the tracking algorithm output is around
0.06 + 0.03 pixels.

However, a uniform circular element does not accurately
represent the shape of a magnetic structure in the solar pho-
tosphere. Therefore, we repeat our analysis using a magnetic
element derived from simulations. Specifically, we isolated a
bipolar magnetic structure generated with the Bifrost code for 15
frames. Furthermore, to improve the robustness of our results,
we repeated the analysis N = 100 times, producing an ensem-
ble of trajectories shown in the bottom panel of Fig. 3 in orange
and blue, respectively elements one and two corresponding to
the positive and negative polarity of the bipole from here on.
These trajectories are compared to the original one, shown in
black. It is also worth noting that the amount of noise intro-
duced in the images (a Gaussian random noise with a o equal
to 12.5% the maximum value of the magnetic field strength,
Bj,s, which is relatively high since we have previously shown
that this same quantity is instead equal to about 5% in the
SDO/HMI image sequences) and the size of the elements to
track (just barely above the minimum required area) make it the
worst-case scenario for the SoFT code. Finally, we performed
the same analysis with different percentages for o of added
Gaussian random noise with respect to the maximum value of
Bj,s and reported the mean deviation from the actual trajectory
in Table 1.

5. Conclusions

In this work, we presented SoFT, a novel feature tracking
suite developed in Python and designed to detect, identify,
and track magnetic elements in the solar atmosphere. Built on
well-established techniques, such as the watershed segmentation
algorithm, and utilising the ease-of-use of Python, it offers a sim-
ple and accessible alternative to many of the currently available
tracking tools. Through an extensive series of tests, we demon-
strate the robustness and reliability of SOFT in different scenarios
and noise conditions.

At first, we studied the performance of the tracking suite on
magnetograms captured by SDO/HMI to show how it works in
real-world applications. In this case, SOFT has proven capable
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Fig. 3. Comparison of the actual and tracked trajectories of a bipolar
magnetic structures obtained from Bifrost simulations. The dataset con-
sists of 15 frames. The detected contours and actual trajectories are
shown in orange and blue respectively for element one and two. The
black line represent the actual trajectories of the two features, obtained
by tracking directly in the Bifrost simulated magnetograms. The orange
and blue lines show the trajectories tracked by SoFT over N = 100 iter-
ations with a noise level of 12.5% of the maximum value of B added
to the original image. The shaded areas represent the standard deviation
for each frame relative to the average path.

of detecting, isolating and following the many magnetic features
frame by frame, despite the dynamic changes of the magnetic
structures further complicating their tracking. In addition, we
performed an extensive noise analysis to understand the code’s
limitations. By tracking both modelled control data and sim-
ulated magnetic structures from Bifrost simulations, we were
able to establish a baseline for the tracking suite. Even under
extremely harsh noise conditions, far above the ones typically
observed in actual magnetograms on many different instruments,
SoFT demonstrated its robustness by maintaining a high degree
of reliability.

SoFT opens up new possibilities for studying the dynamics
of magnetic structures in the solar atmosphere. As it is devel-
oped in Python, it is extremely versatile and can be adapted to
many different scenarios. Finally, SoFT is a live project, and fur-
ther iterations of the tracking suite will include the possibility of
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Table 1. Performance metrics across noise levels.

Noise level D1 D2 R1 R2

0.050 0.088 0.142 0.998 1.043
0.067 0.098 0.179 1.000 0.999
0.083 0.151 0.217 0.995 0.991
0.100 0.190 0.238 0.994 0.978
0.117 0.229 0.251 0991 0.934
0.133 0.302 0302 0976 0.946
0.150 0.338 0314 0971 0911
0.167 0.325 0340 0974 0.880
0.183 0.381 0.363 0.972 0.885
0.200 0.374 0.413 0972 0.835

Notes. Mean deviation from the actual trajectory and the N = 100 tra-
jectories tracked at different noise levels (D1 ad D2, respectively for
element one and two). The table shows the average error in pixels.
Columns R1 and R2 show the ratio between the lifetime of the features
as inferred by the tracking code and the actual lifetime of the feature.

identifying and tracking granules in continuum images and link-
ing magnetic structures tracked in the photosphere with magnetic
features in the upper layers of the solar atmosphere.

Data availability

SoFT is freely
mib-unitn/SoFT.

available at https://github.com/
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Appendix A: Statistical characterisation of the dataset
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Fig. A.1. Statistical distributions of the physical properties inferred by the tracking code. The orange distributions correspond to the coarse detection
method, while the blue distributions correspond to the fine detection method. From left to right, top to bottom: equivalent diameter, magnetic field,
lifetime, standard deviation of v, and v,, and the distribution of the dominant frequency of v, following the same procedure of Berretti et al. (2024).

In Fig. A.1, we show the statistical distributions of the physical parameters of the magnetic structures detected as inferred by
SoFT. Our data set consists of nearly one hour of magnetograms captured by SDO/HMI on 16 April 2020, starting at 12:30 UTC
for 45 minutes with a cadence of 45 seconds in a 200 x 200 square arcseconds region at the centre of the solar disk. The frames
were co-registered to remove the contributions from solar rotation. Magnetic structures are detected using both the fine and coarse
approaches. The detection parameters used are the same in both cases except for min_distance, which is three for the fine approach
and five for the coarse approach. The former resulted in the detection and tracking of 3236 magnetic structures, while the latter led
to the detection and tracking of 2174 structures. It is worth noting that the distributions obtained are an example of the magnetic
elements considered in this work and are not to be considered representative of the entire population of magnetic structures present
in the solar photosphere.
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