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The instrumental advances made in this new era
of 4 m class solar telescopes with unmatched
spectropolarimetric accuracy and sensitivity will
enable the study of chromospheric magnetic fields
and their dynamics with unprecedented detail. In this
regard, spectropolarimetric diagnostics can provide
invaluable insight into magneto-hydrodynamic
(MHD) wave processes. MHD waves and, in
particular, Alfvénic fluctuations associated with
particular wave modes were recently recognized
as important mechanisms not only for the heating
of the outer layers of the Sun’s atmosphere and
the acceleration of the solar wind, but also for the
elemental abundance anomaly observed in the
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corona of the Sun and other Sun-like stars (also known as first ionization potential) effect.
Here, we take advantage of state-of-the-art and unique spectropolarimetric Interferometric
BIdimensional Spectrometer observations to investigate the relation between intensity and
circular polarization (CP) fluctuations in a sunspot chromosphere. Our results show a clear link
between the intensity and CP fluctuations in a patch which corresponds to a narrow range of
magnetic field inclinations. This suggests the presence of Alfvénic perturbations in the sunspot.

This article is part of the Theo Murphy meeting issue ‘High-resolution wave dynamics in
the lower solar atmosphere’.

1. Introduction
A large variety of different magnetohydrodynamic (MHD) wave modes are theoretically
predicted, and indeed observed, in solar magnetic structures ranging from large sunspots
extending over several Mm, down to very small magnetic elements at the limit of spatial
resolution on current solar telescopes [1–10]. Magnetic fields connect different heights in the solar
atmosphere, thus MHD waves propagating along them [11] can play a major role in supplying
the energy budget to the upper layers of the solar atmosphere [12–17]. When particular magnetic
field geometries and local physical conditions are met, propagating MHD waves of one type
can be converted into another (e.g. from slow to fast magneto-acoustic modes and/or Alfvén
waves [18–24]). Observationally, MHD waves in the solar atmosphere are commonly identified as
intensity and velocity oscillations [11,25–31], although associated magnetic field oscillations are
also expected from theory [1,2]. These quantities may have different phase relations depending on
the MHD mode and the propagation state of the wave [32–35]. It is worth noting that the relevance
of magnetic field perturbations goes well beyond the MHD wave field. Recently, it was shown that
magnetic perturbations may give rise to, through the generation of the ponderomotive force, the
well-known FIP (first ionization potential) effect, an elemental abundance anomaly observed in
the corona of the Sun and other Sun-like stars [36]. In recent years, and most notably with the in
situ observations expected from the Solar Orbiter mission [37], the FIP effect has acquired new
relevance as a powerful diagnostic of the solar wind, especially useful for linking the solar wind
to its source regions [35,38].

Many authors have reported [39–44] magnetic field oscillations with periods in the range
3–5 min and oscillation amplitudes ranging from 10 G to a few hundreds G in sunspots,
concentrated either in patches [45] or at the umbra-penumbra boundary [42,46]. Very recently,
extremely long period (up to 60 h) magnetic oscillations were also reported in a number of
sunspots [47]. However, the interpretation of these fluctuations in terms of intrinsic magnetic
oscillations is debated [48,49]. Spurious magnetic oscillations may in fact arise from the cross-
talk between other physical quantities. In particular, in the presence of a vertical gradient of
the magnetic field (as is the case for many magnetic structures in the solar atmosphere), opacity
effects can also play a significant role [49]. Indeed, due to opacity changes, the height of formation
of the spectral line changes too, hence the sampled height varies from which the information
is extracted. Since the magnetic field is not constant, such variable height sampling results
in apparent fluctuations of the magnetic flux. A telltale sign of such a situation arising from
opacity effects is that the apparent magnetic field fluctuations are in phase (or out-of-phase)
with density fluctuations (or diagnostics derived thereof [32]). Analyses of the phase relations
between magnetic field diagnostics, such as the circular polarization (CP) of the spectral line, and
other independent diagnostics (e.g. intensity, Doppler velocity etc.) acquired at two atmospheric
heights are useful to distinguish real magnetic oscillations from opacity effects and cross-talk
[22,32,42,46], and to correctly identify different MHD modes [22,50–53]. An important aspect of
phase lag analysis is that only phase measurements with large coherences should be considered in
order to ensure the reliability of the results. Concerning this, seeing effects can easily destroy the
coherence between different diagnostics and hamper the disambiguation of magnetic oscillations
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from other oscillatory effects. For this reason, long data sequences acquired from space or from the
ground with adaptive optics (AO) systems under good and stable seeing conditions are required.

As of now, most of the literature on the subject is focused on photospheric data (see
for instance, Griñón-Marín et al. [47]). However, with high sensitivity spectropolarimetry
progressively extending towards the upper layers of the Sun’s atmosphere, it is now becoming
possible to examine the chromospheric response of spectropolarimetric diagnostics to wave
dynamics, enabling new possibilities in the identification of the various modes and, possibly,
their dissipation or conversion. These capabilities will be even more enhanced with the advent of
new four metre class solar telescopes like DKIST and EST, which will provide spectropolarimetric
observations of the solar chromosphere with unmatched spatial resolution and polarimetric
precision. In this regard, Joshi & de la Cruz Rodrìguez [54] have shown, through state-of-the-art
spectropolarimetric observations at chromospheric heights, the presence of Alfvénic disturbances
not consistent with opacity effects in the chromosphere of a large sunspot. These results were
obtained by employing sophisticated spectropolarimetric inversion techniques, which represent
a viable alternative approach to solving any opacity issues.

To demonstrate the rich potential of spectropolarimetric diagnostics for MHD wave studies in
the chromosphere, in this work, we take advantage of state-of-the-art and unique observations
of one of the biggest sunspots of the last 20 years acquired by IBIS, the Interferometric
BIdimensional Spectrometer (IBIS [55,56]) instrument at the National Science Foundation’s Dunn
Solar Telescope, to explore the relation between spectropolarimetric diagnostics and, in particular,
circular polarization and intensity oscillations.

2. Data and method
The data used in this study consist of an exceptionally long (184 min) sequence of high-spatial
(0.2 arcsec) and temporal (48 s) resolution spectropolarimetric observations of AR12546, obtained
with IBIS on 20 May 2016, starting at 13:39 UTC. The observations consist of spectropolarimetric
spectral scans (21 spectral points per scan) of the Ca II 854.2 nm absorption line, acquired
under excellent and stable seeing conditions. These uncommon circumstances for ground based
observations, together with the exceptional size of the sunspot (see figure 1), make this dataset
unique and best suited for wave studies. At the start of the data sequence, AR12546 was close
to disk centre at a location of [7◦ S, 2◦ W]. The observations were assisted by the high-order AO
system [57], which was in stable closed-loop conditions for all the duration of the observation. The
integration time was set to 80 ms per exposure. In addition, the calibrated images were restored
with multi-object multi-frame blind deconvolution (MOMFBD [58]) to limit the effect of residual
seeing aberrations.

This study is based on the circular polarization signals on a pixel-by-pixel basis, which is
computed as the amplitude of the Stokes-V profile

CP = |Vmax|
Icont

· sign(Vmax), (2.1)

where Vmax is the maximum amplitude of the Stokes-V spectral profile, and Icont the local
continuum intensity. This is done for all the scans of the data sequence. The spectropolarimetric
sensitivity of IBIS was estimated in [59] as 10−3 of the continuum intensity level. In addition
to radiometric calibration, polarimetric demodulation and cross-talk minimization between the
Stokes parameters was included in the calibration process. This dataset was also studied in
Stangalini et al. [60], Murabito et al. [61], Houston et al. [62], Murabito et al. [63]

In order to ensure the reliability of the results, here we restrict our attention to the intensity and
CP fluctuations only. This choice is also motivated by the fact that since the Ca II 854.2 nm spectral
line often goes into emission, the estimation of the Doppler velocity may lead to inconsistencies
[64]. Inversion techniques may provide a solid context for the reliable estimation of the Doppler
velocity even in these conditions, but such a technique will be addressed and explored in future
work on the subject. The focal point of our investigation is the wavelet analysis of the CP and
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Figure 1. Upper panel: SDO/AIA He II 30.4 nm context image of AR 12546. Bottom left: IBIS narrow band intensity image in
the blue wing of the Ca II 854.2 nm spectral line. Bottom centre: IBIS intensity image in the core of the Ca II 854.2 nm spectral
line. The blue dots indicate the positions where there exists a large (greater than 95%) coherence between the intensity and
CP fluctuations (see text). The three white dots indicate the positions corresponding to the wavelet diagrams shown in figure 2.
Bottom right: Ca II 854.2 nm circular polarization map. (Online version in colour.)

intensity signals at each pixel in our field of view (FoV). The signals associated with MHD waves
can be highly non-stationary [28], thus wavelet analysis is a more suitable methodology to employ
in this case. To this aim, we made use of the well-known wavelet analysis code described in
Torrence & Webster [65], and already employed in many other works focusing on waves in the
solar atmosphere (see for instance, Jafarzadeh et al. [30], Stangalini et al. [66]), and making use
of the standard Morlet mother function to investigate the appearance of power features in the
period-time wavelet diagram.

Finally, we focus on the phase relations between the two signals that, as discussed before,
can be important information to disentangle real magnetic oscillations (if any) from opacity
effects and cross-talk. To this aim, we extract the phase information between the CP and intensity
signals from the wavelet coherence, which is obtained from the same code. In order to ensure the
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reliability of the results, we only considered phase measurements corresponding to a coherence
larger than 90%. It is worth emphasizing that a large coherence is not necessarily associated with a
large amplitude oscillation in the two signals at the given frequency/period (i.e. large power). In
other words, the coherence quantifies the degree of dependence of the two signals independently
of their amplitude.

3. Results

(a) Wavelet analysis
In figure 2, we show, as an example, the wavelet diagrams of the CP and the intensity fluctuations
at the three positions (A, B and C) indicated in the bottom centre panel of figure 1. The 95%
confidence level contours (white lines) highlight the statistical significance of these oscillations.
The three positions are located where a particular phase relation between CP and intensity
suggests the presence of intrinsic magnetic oscillations. In addition, these positions have wavelet
diagrams which are representative of those obtained in correspondence of all the blue dots in
figure 1, and are therefore chosen to highlight particular aspects of the oscillations seen at those
locations. The first thing to note here is that the power of the fluctuations in both intensity and
CP is mainly concentrated in a band centred around 3 min. Moreover, the oscillations at different
locations are not in phase (see for example oscillations at position A and C). This suggests that
local oscillations play a major role. Another important aspect is that, while in the 3 min band there
is a quite good correspondence between CP and intensity, CP wavelet diagrams occasionally
also present power features at longer periods, up to 10–15 min (see top and bottom panels).
These features have significance larger than 95%, and are found outside the cone of influence
represented by the continuous white line, thus they are reliable oscillations; inside the cone of
influence oscillations cannot be trusted due to the limited length of the time series. Since we
are interested in identifying intrinsic magnetic oscillations, long period CP oscillations appear
particularly relevant here since no intensity oscillations are found, as we would expect for opacity
effects. It is worth recalling here that the long duration of our data sequence (more than 3 h) is well
suited to the search of long-period oscillations as highlighted by the cone of influence in the plots.

In order to better investigate the relation between intensity and CP fluctuations, it is useful to
study the spatial distribution of their power. In figure 3, we show the average wavelet amplitude
maps in the 3, 5 and 15 min bands (each one averaging over a 1 min width). The value at each
pixel in this figure is constructed by taking the time-average (horizontal direction in figure 2) of
the period-time wavelet diagram in each of the three-period bands. Here, we note that CP and
intensity do not share a similar spatial distribution of their oscillatory power. The intensity at all
bands show, in fact, a peculiar circular pattern of fluctuations with long-period oscillations (i.e. 5
and 15 min period) dominating the penumbra and 3 min oscillations concentrated in the umbra.
On the other hand, CP oscillations are mainly localized in a C-shaped region, and this is the case for
all bands. However, from the wavelet diagrams in figure 2, the highest power of the oscillations
is mainly concentrated in the 3 min band.

Regarding the lack of intensity oscillations in the central and upper-left regions of the umbra,
we note that this effect could be due to one or a combination of factors. Firstly, opacity effects, by
lowering the height of formation of the spectral line, allow the sampling of intrinsically lower
layers of the Sun’s atmosphere which, due to the atmospheric stratification, display smaller
oscillation amplitudes. Therefore, in this case, one should expect an increase of the CP signal.
However, this is observed only in the upper-left part of the umbra, not at it is centre, thus
opacity effects alone cannot justify the lack of intensity power. It is worth recalling that the
extremely intense magnetic field at the centre of the umbra (approx. 4 kG) can significantly
reduce the acoustic power at the same location (see for instance, [28]), resulting in a reduction
of power also at chromospheric heights. Finally, Stangalini et al. [60] also found evidence of a
surface mode in the same sunspot between the photosphere and the chromosphere. This may also
contribute to the increase of power towards the edge of the umbra. While all of these effects or a
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Figure 2. Time-period wavelet power spectrum of the CP (left column) and intensity (right column) signals at three positions
A, B, and C shown in figure 1 (from top to bottom). The white contour represents the 95% statistical confidence level of the
wavelet analysis, while the blue contours the coherence between CP and intensity oscillations larger than 90%. (Online version
in colour.)

combination of them may lead to the observed pattern, it is certainly difficult to judge which is
the main contributor. Spectropolarimetric inversions may provide essential information in order
to disentangle their relative contributions.

(b) Phase lag analysis
As mentioned in the previous section, the 3 min band shows both intensity and CP oscillations. In
order to possibly disentangle opacity effects from intrinsic magnetic oscillations, it is important to
study the phase relations between the two diagnostics. While for long period CP oscillations there
are no associated intensity oscillations, the examination of the phase lag is particularly important
in the 3 min band. Since both diagnostics display oscillations, it would be impossible to rule out
opacity effects otherwise. To this aim, we consider the regions of the wavelet diagrams at which a
high coherence is measured between the two-time series. This ensures the reliability of the phase
measurements themselves. The light blue contours in figure 2 highlight the regions of the wavelet
diagrams associated with such highly coherent oscillations (coherence larger than 90%), which
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Figure 3. Temporally averaged wavelet amplitude in the 3, 5 and 15 min range, width 1 min, for CP (top) and core intensity
(bottom). (Online version in colour.)

are subsequently considered in our analyses. Since the wavelet analysis is performed on a pixel-
by-pixel basis, we can study the occurrence of phase measurements in the 3 min band, alongside
their spatial distribution. The histogram of the wavelet phase measurements is shown in figure 4.
Here, we note the presence of three components: one centred at ±180 degrees, and two partially
overlapped but still distinguishable centred at 0 degrees and −35 degrees. While the first two
cannot exclude opacity effects as a potential cause, the latter is at a finite value and not consistent
with opacity effects. Here, it is worth noting that the phase values were already corrected for the
effect of the sequential temporal scanning of the spectral line operated by IBIS (i.e. images at the
different wavelengths are acquired sequentially and not strictly simultaneously). Therefore, we
interpret the phase shift at −35 degrees to be a physical phase shift, and statistically significant as
a result of the number of occurrences demonstrated in figure 4. Finally, we note that the blue dots
are found in the region where the measured CP signal is enhanced. This effect could be due to
the density fluctuations associated with the waves, resulting in a shift of the geometrical height
of formation of the spectral line.

(c) Magnetic field inclination
More information regarding the properties of the phase lags can be gained through examination
of the spatial distribution of these phase measurements in the FoV, which are indicated by the
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Figure 4. Histogram of the wavelet CP-I phase measurements in the 3 min band (1 min width), corresponding to large
coherence (greater than 90%). (Online version in colour.)

blue dots in figure 1. Interestingly, these blue dots are not spread across the FoV, but are instead
localized approximately where the amplitude of the CP oscillations are largest (figure 2). More
importantly, the blue dots, which are the locations where both the intensity and CP signals are
linked by a statistically significant phase relation, appear to correspond to a particular narrow
range of magnetic field inclinations spanning 63 ≤ θ ≤ 69 degrees. This can be seen in figure 5,
where we show the magnetic field inclination angles obtained from magnetograms captured by
the Helioseismic and Magnetic Imager (HMI [67]) onboard the Solar Dynamics Observatory (SDO
[68]). The alignment between the HMI magnetograms and the locations of the highly coherent
−35 degree phase lags established in the IBIS data was obtained through coalignment of the
IBIS images with HMI continuum and Atmospheric Imaging Assembly (AIA [69]) EUV images
(figure 1). It is remarkable that the clustering of the ≈ −35◦ phase lag locations occur across a 6-
degree span of magnetic field inclination angles. Such a narrow range of magnetic field inclination
values suggests a possible dependence of the −35◦ phase lag locations on the magnetic field
geometry of the structure.

4. Discussion and conclusion
The presence of observed magnetic oscillations associated with MHD waves is long debated
(see for instance, Khomenko & Collados [49]; and references therein). In this work, we have
investigated the relation between CP and intensity oscillations and their spatial distribution
in the chromosphere of a big sunspot observed by IBIS in the attempt to identify possible
intrinsic magnetic oscillations. As suggested by many authors in the past, one way to exclude the
possibility that CP oscillations are not due to cross-talk or opacity effects is to check for the phase
lag with different quantities [22,32,42,46]. We found that the umbra of the sunspot is dominated
by 3 min CP oscillations and these are associated with intensity oscillations. However, long period
CP oscillations (up to 15 min) are also occasionally excited at the same locations, but in contrast
to the 3 min band, in this case, we observe a lack of associated intensity oscillations. This is not
consistent with opacity effects and suggests magnetic oscillations.

Regarding the 3 min band, the simultaneous presence of intensity oscillations does not allow us
to immediately rule out the possibility of opacity effects, therefore, a phase lag analysis between
CP and intensity was performed. A phase relation between CP and intensity is found at specific
spatial locations in the sunspot. These phase measurements have a high confidence level, and
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Figure 5. Photospheric magnetic field elevation angle with respect to the photospheric plane in the sunspot area, from the
SHARP SDO/HMI data. The inclination is shown in blue shades, the yellow isolines are isocontours of the inclination of the field
lines. The two red contours indicate the inclination between 63 and 69 degrees, respectively. The green isolines show B= 500 G
(vertical magnetic field component), the blue dots are a regular subset of the blue dots in the central panel of figure 1. (Online
version in colour.)

they also appear not in agreement with opacity effects, thus suggesting the presence of intrinsic
magnetic oscillations.

Let us now discuss the significance of a −35 degree phase lag. There are two main factors
that can contribute to the measured phase component that appears to be related to wave activity;
intrinsic phase lag of the wave mode and the height difference at which the CP and intensity
originate. It has to be noted that these two are not mutually exclusive and may both come into
play at the same time resulting in the final measured phase lag. In other words, the resulting
measured phase φ can be thought of as the combination of an intrinsic wave term φwave and
a second contribution φ�h given by the height difference of the CP and intensity signals in the
case of a vertically propagating wave. Regarding the first contribution, as mentioned in the
introduction, different wave modes can have different phase relations between their diagnostics.
Indeed, this can in principle be exploited to identify the modes themselves [32,52]. However, this
is not straightforward in the case of complex geometries where a specific propagation state or
wave reflection can hamper the correct wave identification. A significant improvement could be
represented by the use of realistic state-of-the-art numerical simulations, where specific modes are
excited in complex geometries to estimate the phase lag between different types of fluctuations
(e.g. phase lag between velocity and magnetic field fluctuations), which could be then used to
interpret observational results such as ours.

The second contribution to the phase lag is related to the intrinsic difference between the height
where the CP signal and the core intensity signal originate. Such a difference can introduce an
additional phase term in the case of a propagating wave. The problem of the determination of
the height of formation of the intensity and magnetic signals in the Ca 854.2 nm spectral line
was addressed in great detail in Murabito et al. [61], Cauzzi et al. [70], Quintero Noda et al. [71].
In addition, the height difference can also dynamically change in a magneto-hydrodynamic
atmosphere, a circumstance that may also contribute to the width of the distribution of the phase
measurements seen in figure 4. Although we cannot completely rule out this second possibility,
in the case of an intense magnetic field strength such as the one considered here (i.e. 4 kG in
the photosphere as inferred from Hinode level 2 inverted data), we expect the Alfvén speed to
be so large (greater than 50 km s−1) that the contribution to the measured phase lag from φwave
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is expected to be significantly large than the contribution from φ�h. Indeed, given the fact that
the time difference corresponding to the measured phase lag at a period of 3 min (5 mHz) is
approximately 20 s, the height difference that would cause such a phase delay would be of the
order of at least 1000 km, which is larger than expected from the results presented in the articles
mentioned above. Finally, we recall that along with the −35 degrees component, two additional
components are detected at 0 and ±π , which are likely due to opacity effects. If the height
difference contribution were to be significant, then these additional components should also be
displaced along the phase axis, which is not the case. Therefore, we conclude that, regardless
of the exact nature of the contributions to the phase lag discussed above, the mere existence of
a non-opacity-related contribution (the −35 degree component in the distribution) corroborates
the presence of magnetic-like waves (i.e. fast magneto-acoustic mode in the low-β regime, being
clearly distinguishable from the other two components). Our interpretation is also in agreement
with the results of Houston et al. [62], who have found Alfvén/intermediate shocks at the same
spatial locations. In this regard, given the fact that the coherence patches in the wavelet diagrams
can extend for a few periods, we believe that our results may be interpreted as the signature of
the magneto-acoustic fast mode that eventually leads to impulsive Alfvénic shocks which are
followed by sudden reversals in the Stokes profiles.

Baker et al. [72] have found by using Hinode/EIS observations that the same active region
shows the presence of elemental abundance anomalies on the same side of the umbra. As
previously mentioned, the detection of magnetic fluctuations associated with MHD waves takes
on a particular importance for the FIP effect [36]. In this regard, the observations combined with
the Laming fractionation model suggest a possible link between the co-spatial CP perturbations
and the anomalous abundances.

It is worth highlighting that the narrow range of inclination angles of the magnetic field,
corresponding to the locations at which a phase relation between intensity and CP perturbations
are found, suggests a possible role of the magnetic field inclination and geometry. It has
been shown [4,73–75] that at the Alfvén-acoustic equipartition, magneto-acoustic waves can be
converted into other modes (e.g. from an acoustic-like mode to a magnetic-like mode as the
one we observe here and viceversa). Furthermore, it has been shown [73] that the efficiency
with which modes are converted (i.e. the amount of energy contained in a single mode which
is converted into another mode) depends on the angle between the wavevector and the magnetic
field lines. For this reason, one possibility could be that the magnetic disturbances observed in this
work might result from the mode conversion of fast (acoustic-like) magneto-acoustic waves (in the
high plasma-β regime) to a combination of fast (magnetic-like) magneto-acoustic waves (in a low
plasma-β regime synonymous with sunspot chromospheres [76,77]). This interpretation agrees
with the findings put forward by Houston et al. [62], who calculated the plasma-β = 1 isocontours
at photospheric and chromospheric heights for the same IBIS dataset. Indeed, it was found that
vertically propagating waves, in the region where the Alfvén shocks were observed, encounter
the equipartition layer before reaching the chromosphere, therefore suggesting a possible mode
conversion as the cause of the magnetic fluctuations. While the narrow range of inclinations
associated with the detected magnetic fluctuations in our study may suggest a possible role of
the mode conversion here, it is important to note that if the mode conversion was the only cause,
we would have expected a symmetric distribution of the magnetic waves themselves. But the blue
dots are only found on the left side of the sunspot. However, from AIA observations (figure 1),
we argue that, although in the lower atmosphere the sunspot appears quite symmetric, higher
up its connectivity with surrounding field appears not to be so. In this regard, Laming [36] have
already suggested that magnetic waves responsible for the FIP effect may be generated at coronal
heights by e.g. nanoflare activity. Therefore, the magnetic field connectivity may also play a role
and our results appear to suggest that this is the case. In other words, the spatial asymmetry
of the distribution of magnetic fluctuations highlights the need for a more detailed analysis
of the effect global magnetic geometries have on the transmission and conversion of various
MHD wave modes in sunspot atmospheres, which is beyond the scope of our current study. We
anticipate follow-up work employing spectropolarimetric inversions to further understand the



11

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200216

................................................................

role of magnetic field geometries in chromospheric MHD wave physics. Finally, we would like to
stress once more that understanding the mechanisms that generate the FIP effect can be helpful
to establish a link between the solar atmosphere and the heliosphere. In this regard, Solar Orbiter
will enable a more detailed analysis of the mechanisms underlying the FIP effect itself, and the
study and identification of magnetic-like waves in the solar atmosphere can provide additional
information to be incorporated into models to further advance our knowledge.
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