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ABSTRACT

Aims. We aim to calculate the kinetic, magnetic, thermal, and total energy densities and the flux of energy in axisymmetric sausage
modes. The resulting equations should contain as few parameters as possible to facilitate applicability for different observations.

Methods. The background equilibrium is a one-dimensional cylindrical flux tube model with a piecewise constant radial density
profile. This enables us to use linearised magnetohydrodynamic equations to calculate the energy densities and the flux of energy for

axisymmetric sausage modes.

Results. The equations used to calculate the energy densities and the flux of energy in axisymmetric sausage modes depend on the
radius of the flux tube, the equilibrium sound and Alfvén speeds, the density of the plasma, the period and phase speed of the wave, and
the radial or longitudinal components of the Lagrangian displacement at the flux tube boundary. Approximate relations for limiting
cases of propagating slow and fast sausage modes are also obtained. We also obtained the dispersive first-order correction term to
the phase speed for both the fundamental slow body mode under coronal conditions and the slow surface mode under photospheric

conditions.
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1. Introduction

The solar atmosphere is a dynamic, magnetised plasma contain-
ing numerous distinct structures from active regions to coronal
loops. These structures have been observed to support different
oscillatory magnetohydrodynamic (MHD) modes (for recent re-
views see Banerjee et al. 2007; De Moortel 2009; De Moortel &
Nakariakov 2012). Magnetohydrodynamic waves are important
for several reasons. First, they can be used to calculate the im-
portant background plasma parameters using MHD seismology
of the solar atmosphere (e.g. Andries et al. 2005, 2009; Banerjee
et al. 2007; De Moortel & Nakariakov 2012). Second, because
MHD waves can carry energy over large distances, it has his-
torically been thought that they can play a major role in the
heating of the corona. Extensive discussions on coronal heating
can be found in Walsh & Ireland (2003), Erdélyi (2004), Ofman
(2005), and numerous others. To quantify the contribution of
MHD waves to coronal heating we need both observations of
MHD waves and methods to estimate the energy of those waves.

There have been many observations of MHD waves in
different layers of the solar atmosphere with different instru-
ments. In coronal loops MHD waves were observed with the
Extreme ultraviolet Imaging Telescope (EIT) aboard the Solar
and Heliospheric Observatory (SOHO; e.g. Thompson et al.
1999), with the Coronal Multi-Channel Polarimeter (CoMP;
e.g. Tomezyk et al. 2007), with the extreme ultraviolet imag-
ing spectrometer (EIS) aboard Hinode (e.g. Van Doorsselaere
et al. 2008; Banerjee et al. 2009), and with the Solar Dynamics
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Observatory Atmospheric Imaging Assembly (SDO/AIA; e.g.
Aschwanden & Schrijver 2011; Morton et al. 2012b) to give but
a few examples. In the chromosphere, MHD waves have been
detected using the Solar Optical Telescope (SOT) aboard Hinode
(De Pontieu et al. 2007), using the Swedish Solar Telescope
(SST, e.g. Jess et al. 2009), and using the Rapid Oscillations
in the Solar Atmosphere (ROSA, Jess et al. 2010) instrument
(e.g. Morton et al. 2011). In sunspots MHD waves have been
observed for quite a long time (e.g. Bhatnagar 1971; Beckers &
Schultz 1972; Jess et al. 2013). More recently, MHD waves have
also been observed in smaller magnetic pores in the photosphere
(e.g. Dorotovic et al. 2008, 2014; Yuan et al. 2014; Moreels
et al. 2015). This non-exhaustive list of observations shows that
there is a need for energy quantification methods in order to un-
derstand the energy supply of compressive MHD waves to the
higher layers of the solar atmosphere. In these layers the wave
energy is crucial to understanding the coronal heating problem.

There have been several papers that have estimated the en-
ergy in transverse kink oscillations. Morton et al. (2014) have
used the ubiquity of propagating kink mode observations in the
chromosphere to estimate the energy content of the observed
kink waves. Thurgood et al. (2014) have detected transverse mo-
tions in solar plumes and used the displacement to estimate the
energy in these transverse motions. Determining the energy of
transverse kink motions has also received theoretical attention.
Goossens et al. (2013a) used MHD theory to derive formulas
that determine the energy of kink waves in the solar corona.
Van Doorsselaere et al. (2014) have expanded on this idea and
used MHD theory to write an expression for energy flux in terms
of density filling factors.
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In this paper we focus on axisymmetric slow and fast
sausage modes, which have recently been discovered in numer-
ous structures, but have not been adequately modelled to esti-
mate their energy content. They have been detected in coronal
loops (De Moortel et al. 2000; Wang et al. 2002, 2003; Krishna
Prasad et al. 2012), in photospheric pores (Dorotovi¢ et al.
2008, 2014; Morton et al. 2011; Moreels et al. 2015), in net-
work bright points (McAteer et al. 2003; Bharti et al. 2006;
Martinez Gonzdlez et al. 2011), in flares (Nakariakov et al. 2003;
Melnikov et al. 2005; Van Doorsselaere et al. 2011), and in
the chromosphere (Morton et al. 2012a). Some authors have at-
tempted to estimate the amount of energy present in these ob-
servations. Morton et al. (2012a) have observed both sausage
and kink modes in the chromosphere and used MHD theory to
estimate the energy in the waves. They found that the energy
of compressive (sausage) waves was higher than the energy in
transverse waves. We believe that the approach used in Morton
et al. (2012a) can be improved in several ways. First, the inte-
gration of the wave energy should be performed over the entire
cylinder since the eigenfunctions change with radial position.
Second, the energy outside the flux tube should also be calcu-
lated since this can be of the same order of magnitude as the
internal energy.

In this work we calculate the wave energy in sausage modes
using a similar approach to that presented by Goossens et al.
(2013a). The aim is to calculate the energy using only the back-
ground plasma equilibrium parameters and the phase speed of
the wave. In this way the formulas can easily be applied to dif-
ferent observations to estimate the energy of sausage modes.
This is a very important aspect since it means that energetics
can be determined at height-localised regions of the solar at-
mosphere. In combination with the data analysis method de-
scribed in Moreels et al. (2015) we do not need multiwave-
length imaging approaches to determine the phase speed of the
wave. Therefore, we are able to determine the energy in sausage
oscillations for single filter measurements.

The paper is organised as follows: Sect. 2 gives the math-
ematical framework; Sect. 3 describes some limiting cases for
the energy calculation which are of physical interest, i.e. slow
sausage modes in coronal loops (Sect. 3.1 and Appendix A) and
fast sausage modes in coronal loops (Sect. 3.2); Sect. 4 lists the
conclusions of this paper.

2. Mathematical framework

The mathematical framework in which the energy for sausage
waves is calculated is split into three sections. Section 2.1 de-
rives general energy equations which can be used for different
waves modes in different atmospheres. In Sect. 2.2 we calculate
the energy inside the flux tube for surface modes. Section 2.3
lists the energy equations for both the energy inside the flux tube
for body modes and the energy outside the flux tube.

2.1. General energy equations

Our equilibrium model is a straight cylinder with a constant
radius R where the plasma is uniform both inside and out-
side the cylinder with a possible jump at the boundary (see
Edwin & Roberts 1983). The magnetic field is directed along
the axis of the flux tube and is given by By inside the flux tube
and By outside the flux tube. The plasma pressure and density
are po; and po; inside the flux tube and po. and py outside the
flux tube. We assume that the plasma has no background flow,
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Fig. 1. Equilibrium configuration of the flux tube.

i.e. the equilibrium velocity is vy = 0 both inside and outside the
flux tube (see Fig. 1).

Before starting the energy calculations it is instructive to
first consider the limitations of this equilibrium model. The
straight uniform flux tube model neglects several physical ef-
fects, e.g. density stratification, flux tube expansion, and flux
tube curvature. These effects can be important depending on
the solar structure under consideration. The density stratifica-
tion combined with the flux tube expansion is very important in
the photosphere/chromosphere region. However, while the uni-
form flux tube model neglects these effects it is still valid when
used as a first-order approximation. Andries & Cally (2011) have
shown that for a slowly expanding flux tube the perpendicular
eigenfunctions of MHD waves remain very similar and are still
in terms of Bessel functions. In the corona the density stratifica-
tion and flux tube expansion are minimal, but the curvature of the
flux tubes can be a significant effect. Although Van Doorsselaere
et al. (2004b) have shown that the curvature has no effect on
eigenfrequencies of kink modes for a particular density profile,
Verwichte et al. (2006) have shown that curvature could result
in leaky wave modes, especially for thick flux tubes. While the
leaky nature of the MHD waves will drastically change the en-
ergy outside the flux tube it will have a minimal impact on the
energy inside the flux tube assuming that the internal remain-
ing energy only decreases slowly over one period of the wave.
Therefore, the uniform flux tube model results for the energy in-
side the flux tube are still very useful for estimating the energy
content inside the flux tube of slowly leaking MHD waves.

Zaitsev & Stepanov (1975), Edwin & Roberts (1983),
Sakurai et al. (1991), and many others have solved the ideal
MHD equations for this equilibrium configuration. The solution
method uses the following steps. First, the ideal MHD equations
are linearised around the equilibrium state, e.g. p(r,¢,z,f) =
po + p(r, ¢, 2,1), where pg is the background and p(r, ¢, z, 1) is
the small perturbation. From now on we drop the ¢ depen-
dence since we are studying axisymmetric wave modes. Second,
the resulting equations are solved analytically by performing a
Fourier analysis in the ignorable coordinates, e.g. the density
perturbation inside the flux tube can be written as p(r,z,t) =
o' (r)exp [i(kz — wt)]. In this way all perturbed quantities can be
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related with the radial component of the Lagrangian displace-
ment & and the total Eulerian pressure perturbation P’. Before
listing the most important equations we would like to make the
distinction between Eulerian and Lagrangian variables. This dis-
tinction can be easily explained from an observational point of
view. We assume that we have a series of intensity images of
the sun. When looking at a fixed set of pixels for all images we
are using the Eulerian intensity. On the other hand, a magnetic
structure can be used to define a set of pixels for each image that
describe the structure, i.e. the set of pixels can change at each
image. Defining the intensity based on this set of pixels means
using the Lagrangian intensity. More information on the differ-
ence between Eulerian and Lagrangian variables can be found in
Moreels et al. (2013).
Summarizing the most important equations, we have

pLie) = —crp, (1)
dr
dpr’
a " Po (wz - k%i) & (2)

where C and D are given by
D = po (cf + ci) (w2 - kzci) (w2 - kzc%) ,
C=uw"-1 (cg + ci) (a)2 - kzc%).

In the above equations we have used the Alfvén speed ca,

the sound speed cg, and the tube speed ¢t = (cgifff)”z’ The

above equations are valid both inside and outside the flux tube.
Equations (1) and (2) can be combined to form an ordinary dif-
ferential equation for the total Eulerian pressure perturbation P’,
which is solvable in terms of Bessel functions. Other useful
equations are

‘- ikc? P
: 00 (cg + ci) (a)2 — kZC%) |
f&p =0,
B’ = ikBo& - By (V- €)1,
P =—pociV - &,
2
-w
V.£= /
00 (c% + ci) (a)2 — kzc%)
E' = iwBo&1,. 3)

Equations (3) provide algebraic expressions for the perturbed
quantities &, &, B’, p’, V- &, and E’ in terms of &, and P'.
Using the continuity of &, and P’ at the flux tube boundary,
the dispersion relations can be readily derived (see Edwin &
Roberts 1983). As an example, Fig. 2 shows the dispersion di-
agram under photospheric conditions. For more information on
the different wave modes and their eigenfunctions, see Moreels
& Van Doorsselaere (2013).

To calculate the energy in sausage modes we follow the
method by Goossens et al. (2013a; see also the correction for
the typographic error in Goossens et al. 2013b). This method
is based on the method described in Sect. 9.3 of the book
by Walker (2005). The analysis by Goossens et al. (2013a) is
valid for MHD waves in a pressureless plasma. In the present
paper plasma pressure is taken into account. This introduces
additional terms related to the thermal energy. To calculate
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Fig. 2. Phase speed diagram of wave modes under photospheric condi-
tions. We have taken ca; = 2c¢gi, cae = 0.5¢;, and ¢;e = 1.5¢;. The
Alfvén speeds are not indicated in the graph because no modes with
real frequencies appear in that vicinity. The modes with phase speeds
between cr; and c,; are body modes and the other modes are surface
modes. We note that we only plotted two body modes, while there are
infinitely many radial overtones.

the energy we use quantities that are averaged over a com-
plete cycle of the wave. The averaged kinetic energy (KE),
the averaged magnetic energy (ME), the averaged thermal en-
ergy (IE), the averaged total energy (TE), the averaged Poynting
flux (§), the averaged flux of thermal energy (T'), and the aver-
aged flux of energy (F) are given by

= PO
(KE) = ) (v-v"),
(ME) = —— (B - B"™),
4o

1 ’ Ik
powE (r'p").

(TE) = (KE) + (ME) + (IE),

1 E’ BI*
(S) = —Re{x—},
2 Ho

(IE) =

1 -
(T) = ERC{P v'},
(F) =(8) +(T), )

where p is the magnetic permittivity and an asterix denotes the
complex conjugate of a quantity. We note that the expressions
describe energy density since the dimension of energy is J/m?.
The energy flux is expressed in W/m?.

When considering the energy equations it can seem strange
that the energy equations are quadratic in nature for linear wave
modes. However, the method described in Walker (2005) uses
only first-order reduced MHD equations. The energy equations
also contain no linear terms because these integrate to zero over
a period/wavelength. On the other hand, it is true that when the
observed waves are non-linear in nature, the linear energy equa-
tions might no longer be valid. Therefore, we have calculated
the largest radial component of the Lagrangian displacement in
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order to still be a linear MHD wave. It is straightforward to ob-
tain a link between &,/R and p’/po and this shows that &,/R can
be of the order of a few percent. These small displacements are
observable (e.g. Moreels et al. 2015; Grant et al., in prep.), but
not all MHD wave mode observations are linear (e.g. Morton
et al. 2012a). When applying the linear energy equations to non-
linear systems there can be an overestimate of the energy and
energy flux owing to non-linear saturation of the system. Using
Egs. (3) we can rewrite Egs. (4) to find

Pow

(KE) = 222 (£ £,
,Ookz 2
ME) = KA ) A (5, gy (7, £)
_ pokzc,i ) poc,i ¢, 0€;
STy e (E ar)
1By = 2% (7 o7 )],

(TE) = (KE) + (ME) + (IE),
(S) = —Re {(1p0a)cA (V.- & )fr)l + (PokWCAfrf) }

(1) = —M@MﬁWfﬁ}
(E) = (S) +(T). )

Equations (5) allow us to calculate the energy for any wave mode
in a cylindrical plasma structure.

2.2. Energy inside the flux tube for surface modes

We now have three cases (see Fig. 2) in which to calculate the
energy and energy flux. First, the energy inside the flux tube for
a surface mode. Second, the energy inside the flux tube for a
body mode. Third, the energy outside the flux tube. All three
calculations are very similar and we only give the details of the
calculation for the energy inside the flux tube for a surface mode.
The Eulerian total pressure perturbation for a sausage surface
mode is given by

P'(r,z,1) = Alo(kir) expli(kz — wt)}, (6)

where A is a constant amplitude with dimension J/m?, Iy() indi-
cates the modified Bessel function of the first kind of order zero,
and «; is given by

(02, ) (0~ )
s,1 Al

2 2 _ 2}
A,i)(“’T,i ‘”)

where Kiz is positive. We have introduced the internal sound fre-
quency wsj, the internal Alfvén frequency wa i, and the internal
tube frequency wr i, which are given by w.; = kc.;. We also
need expressions for the radial and longitudinal components of
the Lagrangian displacement. Using Egs. (2) and 3 results in

2= I (7

(a)z. +w
S,1

&rlr,z,1) = Bp 11 (kir) expli(kz — wi)}, ®)
&:(r, 2z, 1) = Edo(kir) expli(kz — wi)}, €))

A60, page 4 of 14

where E, and E; are given by

Ki

(10)

=A (an

[1]

A w? 2 2 _ )2
poi (@ + @) (@ - o)

The constants =, and Z, are related to the radial and the longi-
tudinal components of the Lagrangian displacement at the flux
tube boundary and have dimension m. Also clear is that =,
and Z, are related to each other by the amplitude A; therefore,
quantifying the radial component of the Lagrangian displace-
ment results in a measure for the longitudinal component of
the Lagrangian displacement and the other way around as well.
Later on we use the notation =] and Z/, which are the radial and
the longitudinal components of the Lagrangian displacement at
the flux tube boundary, respectively, and are given by

12)

/= max {&.(R, 2, 1)} = E. 1, (kR),
’ (13)

ax {fz(R’ Z’ t)} - ‘—‘ZIO (KIR)

Calculating the magnetic energy also requires the divergence of
the Lagrangian displacement, which is given in Eqgs. (3) and
results in

2
V=4

Io(kir) expli(kz — wt)}. (14)

2 2 2 _ 2
poi (e + i) (@ - o)

Using Eqgs. (6)-(14) we can now calculate the averaged energy
and the averaged energy flux inside the flux tube (Egs. (5)), and
we find

mm—m‘ﬂm%ww
= o1y (r)? + Colo (ir)?
2
W W (0? —?)
(ME=;?thN+—?LirrlQh%ﬁ,
w s, w ws,i
2
w —_—
(IEy = —C.Io (kir)*,
’ 2
<$—K7/hmwh
(T) = 2sz10 (ki) 1,

where C, and 5‘2 are constants and are given by

oA
r 4 —rl
2
~ _ Pojw 2
C. = ="
4

We point out that the constants C, and C . have dimension J/m?
as expected. The total energy flux is in the z direction as it should
be for trapped wave modes. However, when looking at leaky
wave modes there should be energy flux components in the ra-
dial direction as well. The total Eulerian pressure perturbation
for leaky wave modes is represented by a Hankel function (e.g.
Cally 1986; Vasheghani Farahani et al. 2014), i.e. P'(r,z,1) =
AHy(kir) expli(kz—wt)}, where Hy(kir) = Jo(kir)+1Yy(kir). When
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substituting this type of function in Egs. (5) we find radial com-
ponents in the energy flux. These radial components are due to
the phase shift between the magnetic and the electric field.

At this point the quantities (KE), (ME), (IE), (S), and (T
depend on the radial position. We now define integrated
quantities as

R
(KE) = 2n f (KE)rdr,
0

and similarly for (ME), (IE), (S), and (T). We thus integrate
the energy over the tube cross-section, and thus discuss the en-
ergy per unit length along the magnetic field. To calculate the
total energy we should also integrate over the z-direction from a
height zero to a height L, where L is the length of the flux tube
(see Van Doorsselaere et al. 2014). Since the wave mode prop-
erties do not change with height this results in a simple multi-
plication with a factor L. Closed analytic expressions for (KE),
(ME), (IE), (S), and (T") can be found when using Egs. (9.6.26)
and (9.6.28) in Abramowitz & Stegun (1972), i.e. when using

R R2
f(; ulo(u)*du = > (IO(R)2 - II(R)z) )

R R2
[ unwiau= 5 (0w - nnw).
0

We find that the integrated energy inside a flux tube for a surface
mode is given by

(KE) = C, (kR)* (11 (kiR)* — Iy (iR) I (KiR))

+ C(RY (Io (R = 1 (R)?),

2
N w i
(ME) = w’;’ Cr iR (I R ~ Io (GR) I (R))
2
2 2 2
Wy (‘”s,i — W ) 5 5 s
f @ o G (I @R = Iy kiR)?).

2
(IE) = < C.(kR)? (Io &iR)? — I &iR)?).
w”.
(TE) = (KE) + (ME) + (IE),

2
Caii

=200

C, (R)* (11 (KiR)* — Iy (iR) I (KiR)) 1,

(T) = 22 C.kR? (1o (R = Iy (R L.,

(Fy=(S)+(T), (15)
where C, and C, are given by
C,  poi 5  mAP  ?
Cr=n—=n ) iyl a—
K K 0,i (wZ _ wi,i)
~ —_ 2,4
c oG poie” [P _ 7lAP Wi _
= 2 2 . 2 2
k 4k 4o (‘”s,i + wi,i) (‘”2 - “’%,1)
(16)

It can easily be checked that the energy is now expressed in J/m
and the energy flux is expressed in W. As can be seen from

Egs. (15) the thermal energy and thermal energy flux depend
on the plasma motions along the magnetic field, i.e. they are
proportional to |Z.>. On the other hand, the Poynting flux de-
pends on the motions perpendicular to the magnetic field, i.e. it
is proportional to |Z,|%.

2.3. Energy inside the flux tube for body modes and external
energy

We can do a similar calculation for the energy inside the flux tube
for body modes. The only change is the integration of the Bessel
functions. For a body mode the pressure perturbation is given
by P'(r,z,t) = AJo(nir) expli(kz — wt)}, where A is a constant
amplitude, Jy(.) indicates the Bessel function of the first kind
of order zero, and n? = _K12 and is positive. As before, closed
analytic expressions for the energy and flux of energy can be
found when using the following integrals:

R R2
f wlo(uydu = = (JoR) + Ji(R)?).
0 2

R R2
[ wniau = T (1@ - niw)(w).
0

These integrals can be checked with Eqs. (9.1.27) and (9.1.28)
in Abramowitz & Stegun (1972). The result for the averaged en-
ergy and averaged energy flux for body modes is

(KE) = C,(miR)* (1 (mR)* = Jo(mR)J2(niR))
+ C.(kR)* (Jo(miR)* + J1 (mRY?),
2

(ME) = “AC,0R? (1(mRY: — JomR(miR))
w

2
w? . (a)z]. - wz)

2 2,2
s,i w ws,i

C.(kR)? (Jo(mR) + J1(mRY?),

2
(E) = - C.(kR)? (Jo(iR)? + Ji(miR)?).
w

(TE) = (KE) + (ME) + (IE),

2

) = 22, R (M mRY? — Jo(mRIEnR) L.,
w/k

@) = 22CURY (o) + J1 (R’ L.,

(F) =(8) +«(T), (17)
where C, and C, are given by Eqgs. (16).

In the same manner we can calculate the energy outside
the flux tube. There are several changes in the derivation. First,
the integration of the Bessel function changes, since exter-
nally the wave is written by P’(r, z, ) = AKy(ker) exp{i(kz — wt)},
where A is a constant amplitude, Ky(.) indicates the modified
Bessel function of the second kind of order zero, and Kg is the
same as K12 but with equilibrium parameters outside the flux tube.
Second, the integrated quantities are now defined as

(KE) = 2r f w(KE)rdr, (18)
R
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i.e. integrating over the entire domain outside the flux tube. To
obtain closed analytic expressions for the energy and flux of en-
ergy we use Eqgs. (9.6.26) and (9.6.28) in Abramowitz & Stegun
(1972),i.e. we use

00 1 o
fl; uKo(u)zdu = 3 [uzKo(u)2 - u2K1(u)2]R s

00 1 o
fR uKy(u)2du = 3 12K (u)? — u2K0(u)K2(u)]R .

One can easily see that all terms at infinity are zero, e.g.
lim,,_, oo u”Ko(u)> = 0. The result for the averaged energy and
averaged energy flux for the energy outside the flux tube is

(KE) = C/(keR)? (Ko(keR)Ka(keR) = K1 (kcR)?)

+ C.(kR)* (K1 (k:R)* = Ko(keR)?)

2

(VIE) = “32C,(kR) (KolkeRKa(keR) ~ K (:RY)
W, (wie B wz)z 2 2 2
e kR (Ki(keR)* = Ko(keRY?),
0B) = 2 C.0RY (Kn (R — KnlkeRY),

(TE) = (KE) + (ME) + (IE),

2

) = 222, (R (Ko(keR K (ko) — K1 (0RY) L.,
w/k

@) = 22C.0RP (K1 (R = Ko(eRP) L,

(F) =(8) +«(T), (19)
where C, and C; are given by Egs. (16) but with all equilibrium
parameters taken outside the flux tube.

Equations (15)-(19) allow us to calculate the energy in
sausage mode in a general cylindrical plasma structure, i.e. we
have not restricted ourselves to coronal flux tubes. As input we
need the radius of the flux tube, the sound and Alfvén speeds,
the plasma density, the period and phase speed of the wave, and
the radial or longitudinal component of the Lagrangian displace-
ment at the flux tube boundary. We stress that only the radial or
the longitudinal component of the Lagrangian displacement is
needed since both are linked through the amplitude A as men-
tioned earlier. All of these are available with modern ground-
or space-based observations combined with empirical solar at-
mospheric models (e.g. recent work by Morton et al. 2011;
Dorotovi€ et al. 2014; Moreels et al. 2015). Our equations are
generally valid and can be used to calculate the energy and en-
ergy flux in the observed axisymmetric waves.

The group speed v, is defined as

_ B

== (20)
(TE)

Vg

where (F) is the sum of both the internal and external flux of
energy and (TE) also includes both internal and external energy.
In this way the group speed expresses the propagation speed of
energy.
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Fig. 3. Phase speed diagram of wave modes under coronal conditions.
We have taken ca; = 2¢gi, cae = 5S¢, and ¢ = 0.5¢,;. All modes
are body modes. For the slow modes we only plotted one mode, for the
fast modes we plotted five modes, while for both there are an infinite
number of radial overtones.

3. Limiting cases

In this section we study some cases of physical interest, i.e.
sausage modes in thin flux tubes. Figure 3 shows the dispersion
diagram under coronal conditions. We have two types of wave
modes, i.e. fast and slow sausage body modes. We only plot-
ted one slow body mode and five fast body modes, while there
are actually many radial overtones. We begin by studying slow
sausage modes (Sect. 3.1) in thin (coronal) flux tubes and after-
wards we look at fast sausage modes (Sect. 3.2) in coronal flux
tubes at the cut-off wavenumber. The extra assumptions that are
made in the section are usually valid in the solar corona, but care
needs to be taken with the thin tube limit. Aschwanden et al.
(2004) explained that coronal loops may oscillate with higher
harmonics, which would result in the thin tube limit not being
applicable, and that the use of the full energy equations from
Sect. 2.2 should be applied. We stress that this section of lim-
iting cases uses extra assumptions that are not necessarily valid
in different layers of the solar atmosphere. Therefore, care needs
to be taken when utilizing the results from limiting cases and in
some cases it may be that the full set of energy Eqs. (15) provide
a more accurate result.

3.1. Slow waves

In this section we look at the limiting case of slow waves in
thin flux tubes. In the literature there has been extensive study
on slow magnetoaccoustic waves (see De Moortel 2009, for
an overview). From these studies we know that the energy of
the wave should propagate along the magnetic field at the local
tube speed. We begin by giving the dispersion relation for slow
sausage body modes (see Edwin & Roberts 1983),

Po.i (wi,i - wz) KkeR Ki(KeR) Jo(miR)
Poe ((")i,e - aﬂ) niR Ko(keR) Jo(niR)

1, 1)


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425468&pdf_id=3

M. G. Moreels et al.: Energy and energy flux in axisymmetric slow and fast waves

where the dash denotes the derivative of a Bessel function (e.g.
J§(niR) = (d/dx)Jo(x) evaluated at x = n;R) and where n? = —«?
is given by Eq. (7). We also study slow sausage surface modes,
which do not occur under coronal conditions but do occur under
photospheric conditions (see Fig. 2). The dispersion relation is
slightly different, i.e.

poi (€35 = @) R Ky(keR) lo(kiR)
Poe (wie — wz) KR Ko(keR) I(,)(KiR)

1, (22)

but the calculations will not be very different. We study slow
waves in thin flux tubes, meaning that kR goes to zero. When
looking at the phase diagram (Fig. 2 or Fig. 3) we notice that the
phase speed of slow waves approaches the internal tube speed
as kR becomes smaller. After studying the dispersion relation
(Eq. (21)) we found that as kR — 0 the frequency of body modes
is given by w = wr; + (kR)? In(kR)w; . For surface modes the
+ sign is replaced with a — sign. Expanding the Bessel func-
tions that appear in the dispersion relation (Eq. (21)) results in a
non-zero w; given by

> 9 )
1 po,e (‘”A,e ‘“T,i) (‘”s,i “’T,i)

4 poi

wy = (23)

2 2 .
(ws,i +w A)i) wrj

We want to make several remarks on this dispersive correction
term w; (kR)? In(kR). First, the expression for w is not needed in
the long wavelength limit (i.e. kR = 0). Second, the expression
for w; has the correct dimension, i.e. it is a frequency. Third,
under coronal conditions the sign is negative as we would expect
since slow body waves have higher phase speed than the internal
tube speed. Fourth, this formula is only valid for the fundamental
body mode, not for radial overtones because of the expansions of
the Bessel functions we have used, i.e. we assumed that ;R < 1,
while for radial overtones this is not the case. Fifth, the formula
for w; is not valid under photospheric conditions. Figure 3 in
Moreels & Van Doorsselaere (2013) shows that the fundamental
slow sausage body mode under photospheric conditions has one
node inside the flux tube in the eigenfunctions, meaning that n;R
is not small and our expansions of the Bessel functions are not
valid. Because of these restrictions, this formula is only valid for
the fundamental body mode under coronal conditions.
In expanding the Bessel functions we used

> 2 2 2
1 (ws,i wT,i) (wA,i wT,i)

VIn(kR) (a)i]. + a)zA’i) Quwriwr)

> 2 > 9
(‘”&e ‘”T,i)(‘”A,e ‘”T,i)

)

keR = kR

2 2 2 2 -0,
(‘"S»e + ‘UA,E) (wT e ‘“T,i)

where we retained terms up to (kR)* In(kR). The constants C,
and C, are written in several forms; one of which uses unknown
amplitude A. We can find the amplitude A by looking at the
Lagrangian displacement and the pressure perturbation (Egs. (6),
(8), and (9)). We know that all these must remain finite, also
at the flux tube boundary. We have defined =] to indicate the
maximum longitudinal component of the Lagrangian displace-
ment at the flux tube boundary. This is related to the variable
=, by E = E,Jo(n;R), meaning that for thin flux tubes we have

Z
—

E! ~ Z,. Assuming that Z is finite, combined with the continu-
ity of the pressure perturbation allows us to find an expression

for both the internal amplitude A; and the external amplitude A..
These are given by

Ai = (kR) In(kR) (—2ipojwriw (1 + wh ;/w?)) REL,
Ae = (kR) (2ipowriwn (1 + 0} ;/w;)) RE.

We note that these are just Eqgs. (10) and (11) applied to body
modes in thin flux tubes. When using these amplitudes we find
that both the pressure perturbation and the radial component
of the Lagrangian displacement inside the flux tube go to zero
as (kR) In(kR) goes to zero. The longitudinal component of the
Lagrangian displacement inside the flux tube is approximately
constant and is non-zero. The pressure perturbation, the radial
component of the Lagrangian displacement, and the longitudi-
nal component of the Lagrangian displacement outside the flux
tube go to zero as kR goes to zero.

We now calculate the energy for slow sausage modes in the
long wavelength limit (i.e. kR = 0) and we find

(KE) = %(JJ%JR'RZE?,
2
N POi 2o 2—=r2 O‘)T,i
(ME) = TwT,iﬂR E, 2
Al
2
= PO 2 2—=r2 wT,i
(IE) = TwT,iﬂR E, 0
s
TE) = Bt nR’22,
8y =0,
<7> = %w?ﬁ]—ﬂRZE?CTJlZ,
Vg = CT,ilz» (24)

As before, the energy is expressed in J/m and the energy flux is
expressed in W. The energy is contained entirely inside the flux
tube, i.e. the energy outside the flux tube is zero. This was to be
expected since we already found that the perturbations outside
the flux tube go to zero as kR goes to zero. We also retrieve the
expected equipartition of energy between the potential energy
(i.e. the sum of both magnetic and thermal energy) and the ki-
netic energy. The group speed is exactly equal to the tube speed
and is directed along the magnetic field. We remark that these
formulas are applicable in different regions of the solar atmo-
sphere, both in the corona and in the photosphere. Previously,
we stressed that the dispersive correction wi (kR)? In(kR) was
only valid for fundamental body modes under coronal condi-
tions. However, as mentioned before, in deriving Egs. (24) we
did not need Eq. (23), which describes w;. The constant w; can-
celled out in the long wavelength limit, showing that Eqgs. (24)
are also valid under photospheric conditions. In Appendix A we
list the complete expressions for slow wave modes in thin flux
tubes, i.e. with a small but non-zero value of kR. The expres-
sions in Appendix A are valid for the fundamental slow body
mode under coronal conditions and for the surface mode under
photospheric conditions.

We averaged the flux of energy across a surface perpendic-

ular to the magnetic field resulting in (Fs). The surface over
which we averaged is a circular disk with radius d;. The idea
behind this averaging over an area is linked to the paper by
Van Doorsselaere et al. (2014). In that paper MHD theory is
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used to write an expression for energy flux in multistrand coro-
nal loops in terms of density filling factors. As explained in
Van Doorsselaere et al. (2014) the radius of a flux tube strand
R can be linked with the influence radius of that flux tube strand
d using the density filling factor f, i.e.

R2
f== (25)
f
The averaging results in
e Po.i =
(Fs) = f7w§l Ecril,, (26)

where the averaged flux is now dependent on the density filling
factor f. We note that the dimension of (Fg) is W/m?>.

For slow waves in the footpoints of thin coronal flux tubes
we can make the extra assumption that the plasma beta is low
(i.e. B8 < 1). We find that ‘”%,1 ~ a)ii(l — 0.5yp), where v is the
ratio of specific heats. For the energy we find

Lo,i

2—/2

(KE) = ZLo} nk%2
(ME) = p g ’iﬂRzEfgﬁ,

p01 2.—./2( Y )
1IE wr. aR“E- (1 - =],
(B = 20} Rz (1- Lp
(S) =
(T) = 250} 7R er,,

v, = 4 (1 + %ﬁ) 1. 27
When the plasma beta is equal to zero we still have equiparti-
tion between kinetic and potential energy, but the potential en-
ergy is only thermal energy with no contribution of magnetic
energy. We also find that energy is transported along the field
lines at the internal tube speed, which is equal to the internal
sound speed. Therefore, these waves are very like sound waves
in a non-magnetised atmosphere, except these waves travel along
the magnetic field.

3.2. Fast waves

In this section we study fast sausage modes under coronal condi-
tions. The fast sausage modes can be seen in the coronal disper-
sion diagram (Fig. 3) and their dispersion curves are shown with
full lines. In particular we study the fundamental fast sausage
mode, but radial overtones are also discussed. We immediately
put plasma beta equal to zero since this eliminates only the slow
modes from the dispersion diagram, not the fast modes. We split
the discussion into two parts, one dealing with the energy inside
the flux tube and the other outside the flux tube.

3.2.1. Energy inside the flux tube

The dispersion relation for body modes has already been given in
Eq. (21). Following the same calculation as Vasheghani Farahani
et al. (2014) we find that the solution of the dispersion relation
at the cut-off wavenumber k. is given by w = wae, niR = jo,
and

WA i

[ 2 2
Wy T Wy e
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where jo is the first zero of the Bessel function Jy(n;R). This is
the solution for the fundamental sausage mode; for the /th radial
overtone we need to replace jo; with jo;, where jo, is the /th
zero of the Bessel function Jo(n;R).

Unlike the study of slow sausage waves, here we do not need
a better approximation of the phase speed around the cut-off
wavenumber since no indeterminate forms occur in the energy
calculations. We know that

niR = jo1,

keR = kc.R

We can now expand the Bessel functions that occur in the en-
ergy equations (Eqgs. (17)). As was the case for slow modes, here
too we need an expression for the unknown amplitude A that
appears in the constants C, and C,. Again, we determine the am-
plitude A from Eqgs. (10) and (11) applied to body modes. Since
we are working in the cold plasma approximation we already
know that &, = 0 everywhere, therefore Eq. (11) cannot be used.
As before, we define = as the maximum value of the radial com-
ponent of the Lagrangian displacement at the flux tube bound-
ary, which is linked to E, by Z. = E,J;(niR). We know that &,
and P’ must be finite everywhere and non-zero at some point
inside the flux tube, otherwise there would be no wave energy
inside the flux tube. This happened in the previous limiting case
(see Sect. 3.1), where in the long wavelength limit the external
wave perturbations were exactly zero and therefore we found no
external energy. A possible solution is

2 2
Poi (wA,e - wA,i) —,
A= —————=RE],
Jo.1J1(jo,1)
2 2
A = _pO,e (O‘)A,e - wA,e)R,:, -0
¢ kR Ky (eR) "

After some straightforward calculations we find that the en-
ergy inside the flux tube for fast sausage modes at the cut-off
wavenumber in the zero plasma beta approximation is given by

(KE); = 222 7R?=EP2,
4
(ME); = /ﬂwiinRzE?,
(IE); = 0,
(S) = 2 2 wAcheﬂR2 =1,
(T = 0. (28)

Because we are working in the cold plasma approximation we
expect no thermal energy and this is confirmed here. We note
that there is no equipartition of energy between magnetic and
kinetic energy. This is not a problem since we have not included
the external energy at the moment. We have not mentioned the
group speed since we have not yet calculated the external energy.

3.2.2. Energy outside the flux tube

We now calculate the external energy for fast sausage modes
at the cut-off wavenumber. From Sect. 3.2.1 we already know
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the complete solution to the dispersion relation and the ampli-
tude A.. Therefore, we can just use Egs. (19). We know that
the kinetic energy is given by

(KE). = C, (kR (Ko (keR) K> (kR) = K1 (keR)?)

+ C.(kR)* (K1 (k:R)* = Ko (kcR)?)

_ Poe
4

In the calculation we have used the small argument expansions
for the Bessel functions since x.R = 0. The external kinetic en-
ergy resembles the internal kinetic energy, except that the density
is taken outside and there is the added (— In(k.R) — 1) term. It is
this last term that is problematic: we know that x.R = 0, and so
this term becomes infinitely large.

To expand on this case of infinite energy, we first looked at
trapped wave modes very close to the cut-off wavenumber nu-
merically, i.e. we numerically integrated Eq. (18) for trapped
wave modes. We are dealing with trapped wave modes, therefore
we would expect a finite, but possibly large, external energy. We
indeed found that for all trapped wave modes the energy is finite,
but for kR — k.R the external energy becomes much larger than
the energy inside the flux tube. This confirms the mathematical
result that at the cut-off wavenumber the external kinetic energy
becomes infinite.

An infinitely large kinetic energy is not physically accept-
able. The reason that the energy is infinite is quite simple
from a mathematical point of view. Sausage waves at the cut-
off wavenumber have been represented by Bessel functions. Of
course, at the cut-off wavenumber the wave mode becomes leaky
and it should be represented by Hankel functions (e.g. Cally
1986; Vasheghani Farahani et al. 2014). Going back to Eq. (18)
and substituting (KE) by the correct expression with Hankel
functions leads to the integral

WA JRE? (= In(keR) = 1).

(ﬁ)e = Cf Hg (ker) rdr,
R

where C is a non-zero constant. The Hankel function squared can
be written as H(Z)(Ker) = Jé(Ker) + Yg(/(er), where Jy(.) and Yy(.)
are Bessel functions of the first and second kind of order zero.
This function is not square-integrable, i.e. the function is non-
zero at infinity and therefore the integral results in an infinite
kinetic energy.

Naturally, there is also a physical reason why the kinetic en-
ergy is infinite. Assume that at a certain time ¢ a flux tube in equi-
librium is suddenly perturbed such that the excited wave mode is
a fast sausage wave at the cut-off wavenumber. Because the wave
mode is leaky, the energy will be transported outward from the
flux tube at a certain speed V. When we observe this wave mode
at time ¢ + At and we want to calculate the energy, we need both
the energy inside and outside the flux tube. For the energy inside
the flux tube we have derived formulas in Sect. 3.2.1. To calcu-
late the external energy we need to realise that the wave energy
has only propagated to a distance d = VAt, because the energy
propagates at a velocity V. Therefore the integral we need to
compute is not Eq. (18), but we should compute

(KE). =21 f (KE)erdr (29)
R

since the energy is zero when going further from the flux tube

than a distance d. This formula would give us a finite kinetic

energy as we would expect. The shortcoming in the modelling

of the wave modes is assuming that these waves exist over the
entire infinite domain, while in reality they only exist up to a
certain distance d outside the flux tube. We can summarise this
particular wave mode as a case where no normal mode solution
is found that is physically acceptable, but there is actually a wave
mode solution to the initial value problem (Roberts & Boardman
1962).

The physical distance d is almost impossible to quantify
directly since the transport of energy is difficult to identify,
even using the highest-resolution solar observations. However,
there are ways to infer this distance d. We turn to the paper by
Van Doorsselaere et al. (2014) and use the influence radius of
a flux tube strand d; = R/\[f to quantify the distance d. Using
this influence radius dy in combination with Eq. (29) should re-
sult in finite values for the energy of the wave mode. The general
calculation, when not using a specific wave mode and when inte-
grating to a distance d, results in equations similar to Eqs. (19)
with some adaptations, e.g.

K (RAF) = Ko (<RWT) Kz (kRAF)
f

(KE) = C, (k.R)?

+ Cr (keR)? [ Ko (KeR) K> (keR) = Ki (k:R)? |

Ko (keRIT) = K1 (eRAT)
f

+ C,(kR)?

+ C.(kR)? | K1 (keR)? = Ko (keR)*] (30)

where C, and C;, are given by Eq. (16) taken with values outside
the flux tube. We have similar equations for the magnetic energy,
the thermal energy, the total energy, the Poynting flux, the flux
of thermal energy, and the flux of energy.

We can now proceed as in the case of the energy inside
the flux tube for fast waves. We already know the complete
solution to the dispersion relation and the amplitude A, (see
Sect. 3.2.1). Therefore we can expand the Bessel functions for
small arguments and using Eq. (30) we find that

(KE), = %wi’eﬂRzEf In(1/f),
(ME), = %wi)inRzE? In(1/f),
<E>e = 0,

(). = 255 e ot} AR°Z In(1/ L,

(T) = 0. (€29)

These expressions are very similar when compared to the energy
equations inside the flux tube (Egs. (28)), the densities are taken
outside the flux tube and there is the extra logarithmic factor. We
first check what this logarithmic term implies. We know that the
filling factor f is a value between zero and one, meaning that the
energy is indeed positive. When the filling factor is one, we find
that the energy is zero, which is to be expected. When the filling
factor is one, we have d; = R and the integral is then calculated
on a zero interval. When the filling factor is zero, we find that the
energy is infinite. This is also as it should be since for a filling
factor of zero we have a single isolated flux tube with d; = oo
and we arrive at the same problem as we had at the start of this
section.
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3.2.3. Total energy

Finally we now consider the energy for fast sausage waves both
inside and outside the flux tube. We easily find that the energy
and flux of energy are given by

poi+poeIn(l/f) ,

(KE) = . W JRE,
f— i + In(1
(ME) = wwii,ﬂgzg;{
(E) =0,
— i + In(1
(TE) = Loi T poe M/T) ’DOZ d/n (wi’i + wi’e) nR?Z?,
2 2
_ P0,iWs ; + Poew In(1/f)
(S) = A ; Ae cAemR2EL,
(T) =0,
2 2
—  Po,iwy; t poewy  In(1/f)
(F) = Al PReTAe caeR2E1.. (32)

2

We note that there is no equipartition of energy between kinetic
and magnetic energy. This should not come as a surprise since
we have calculated the external energy only to the point d; and
equipartition should only exist over the entire space. As before,
we also calculated the flux of energy averaged over a surface

perpendicular to the flux tube (F_s), which is given by

POWY ; + poewy  In(1/f)

(Fs)=f caeEr 1,
2
2,00,1'60?\,,- +poewy (/) cp.
DV, = &)
¢ poi+poeIn(l/f) i +wi,
1 +In(1
- D (33)
L'+ In(1/f)+ ¢ +1In(1/f)/{
where { = poi/poe is the density contrast as introduced in

Van Doorsselaere et al. (2004a). We note that the flux of energy
averaged over a disk with radius d; is a finite value for any value
of the filling factor f. The group speed depends on the density
filling factor f, the density contrast £, and the phase speed of the
Wave Ca c.

We consider the result from Morton et al. (2012a), where
they observed both sausage and kink modes in the chromosphere
and found that the energy of compressive (sausage) waves was
larger than the energy in transverse waves. We now have formu-
las for the energy of fast sausage waves and in Goossens et al.
(2013a) or Van Doorsselaere et al. (2014) we can find formulas
for the energy in fast kink waves. We assume some realistic val-
ues for the filling factor and the density contrast, i.e. f = 0.1 and
{ = 5. We calculate the total energy for both wave modes, i.e.

<ﬁ>sausage = 0~37p0,i ((U,zq)i + ‘Ui,e) E‘sz"
(TE)kink = 0.6p0,iwxEr,

where we have normalised the energy with the unit of vol-

ume over which the energy was calculated and where wg =

PO.i‘U/Z\,i tpoe sz‘e
PoitP0e
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is the kink frequency. When taking the ratio we

ﬁ sausage — — . .
find Eslwee — 2 252/ E2. Hence, the ratio of energy in sausage
Mcink
waves and in kink waves depends on the amplitude of the ra-

dial component of the Lagrangian displacement. If these are of

the same order we find that = 2.2. This is of the same

il
magnitude as the observations byk lk\/Iorton et al. (2012a) where

the authors found a ratio of 2.7 with some uncertainty. Our the-
ory with a realistic filling factor and density ratio thus agrees
with the energy ratio found in specific observations between kink
and sausage modes.

4. Conclusions

In this paper we have derived formulas to calculate the wave en-
ergy in sausage modes. We did this by modelling the flux tube
as a straight cylinder with constant radius and constant plasma
parameters both inside and outside the flux tube. The formulas
can thus be applied to different regions in the solar atmosphere
because we did not use the thin tube or low plasma beta approx-
imations. We did, however, neglect density stratification and/or
flux tube expansion effects in our equilibrium model, meaning
that some care needs to be taken when applying the energy for-
mulas (Egs. (15), (17), and (19)) to photospheric observations.
On the other hand, these effects are less important under coronal
conditions, meaning that the limiting cases (see Sect. 3) can be
applied readily to coronal or chromospheric observations.

In Sect. 2 we have calculated the energy in wave modes using
the complete equilibrium model, i.e. no additional assumptions
were made. The resulting equations (Eqs. (15), (17), and (19))
can be applied to both surface and body modes and the energy
both inside and outside the flux tube can be calculated. As in-
put for the calculations one needs the sound and Alfvén speeds,
the phase speed of the wave, the plasma density, the radius of
the flux tube, and the amplitude A that occurs in the mathemati-
cal description of the wave. The amplitude A can be linked with
either the radial or longitudinal component of the Lagrangian
displacement at the flux tube boundary (see Egs. (16)). All
these parameters are available from observations and/or empir-
ical models of the solar atmosphere. The phase speed of the
wave is the hardest parameter to determine for observations in
the lower solar atmosphere, since observations are only taken at
one or a few heights in the magnetic structure. A method for
determining the phase speed of waves using only intensity im-
ages at one height in the solar atmosphere has been described in
Moreels et al. (2015). The key to determining the phase speed
is to be able to identify the fractional changes in intensity and
area, for which a high resolution is needed. Thus, as we move
into the era of the Daniel K. Inouye Solar Telescope (DKIST,
formerly known as the Advanced Technology Solar Telescope
(ATST), Elmore et al. 2014) and the European Solar Telescope
(EST, Collados et al. 2010), this paper combined with Moreels
et al. (2015) will provide a way to analyse sausage modes in the
lower solar atmosphere as the methods of observation become
more advanced. It could also be said that the results of this work
will become more accurate over time as the resolution of the data
increases, therefore this work will become even more useful in
the future.

In Sect. 3 and in Appendix A we have applied the general en-
ergy formulas to the case of sausage modes in thin flux tubes (in
coronal/chromospheric flux tubes). We have formulas to calcu-
late the energy for slow sausage modes in the long wavelength
limit for both general plasma beta (Egs. (24)) and low plasma
beta values (Egs. (27)). The slow sausage wave is dominated by
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the longitudinal component of the Lagrangian displacement and
therefore the energy is expressed in terms of this displacement.
In the long wavelength limit we find the equipartition between
kinetic and potential energy. In the cold plasma approximation
(i.e. the plasma beta is zero) the potential energy consists only
of thermal energy and the magnetic energy is exactly zero. The
group speed is equal to the internal tube speed, as expected.
In Appendix A we list the energy equations for both the fun-
damental slow sausage body mode under coronal conditions and
the sausage surface mode under photospheric conditions in thin
flux tubes (i.e. kR is small but non-zero). In this section we also
found the dispersive first-order correction to the phase speed in
the thin tube limit for both the fundamental slow sausage body
mode under coronal conditions and the sausage surface mode
under photospheric conditions. From an observational point of
view the most important quantity is the averaged flux of energy
through a surface perpendicular to the flux tube (Fs), which is
given by

- PO
(Fg) = f?vzch,ilz'

(34)
The flux (Fs) is expressed in W/m? and can easily be calculated.
In the above formula f is the filling factor which is available in
most observations. The equilibrium density inside the flux tube
po.i can be found from empirical models of the solar atmosphere.
We also have V., which is the longitudinal component of the ve-
locity perturbation at the flux tube boundary, for on-disk obser-
vations this is mainly the line-of-sight velocity. Finally, ¢ is the
phase speed of the wave.

We applied the general energy equations to fast sausage
modes at the cut-off wavenumber with the assumption that the
plasma beta is zero. Here the wave mainly has a radial compo-
nent of the Lagrangian displacement resulting in energy that de-
pends on the radial component of the Lagrangian displacement.
The energy inside the flux tube was easily calculated, but the
energy outside the flux tube was more involved. We finally com-
bined the concept of flux tube strand influence radii as explained
in Van Doorsselaere et al. (2014) to arrive at energy formulas
for the fast sausage wave (Egs. (32)). The energy equations also
depend on the filling factor f which is available from modern ob-
servations. We compared the energy in fast sausage waves with
the energy in transverse kink waves and found that, depending
on the amplitude of the radial component of the Lagrangian dis-
placement, either sausage waves or transverse kink waves can
contain more energy. As before we discuss the averaged flux of

energy (Fs) in greater detail. We know that

Poe

(Fs) = f(1+ In(1/ =7 w) Eeacl:. (35)

Again, the flux (Fs) is expressed in W/m? and can easily be cal-
culated. The filling factor f is available from observations. The
equilibrium density outside the flux tube pg can be found in em-
pirical models of the solar atmosphere. We use = to denote the
radial component of the Lagrangian displacement at the flux tube
boundary, which can be quantified using the radial change of the
structure under observation. The speed cx . is the phase speed of
the wave. The frequency wa . is the frequency of the wave.

Finally, we stress once more the applicability of these energy
equations. The general energy equations are applicable for any
axisymmetric magnetoaccoustic wave in a cylindrical plasma
structure. In this way the energy equations can be used in all
regions of the solar atmosphere, from the photosphere up to
the corona.
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Appendix A: Energy in slow wave modes in thin flux tubes

We now focus on the energy expressions for slow waves in thin flux tubes, i.e. with a small but non-zero value of kR. As in Sect. 3.1
we find that as kR — 0 the frequency of slow modes is given by w = wr; + (kR)? In(kR)w;, where the “plus” is the fundamental
body mode and the “minus” is the surface mode. We have the same expressions for n;R, x.R, and w; as in Sect. 3.1 and so we do not
list them here. To calculate the amplitudes A; and A. we take some extra terms from the Bessel function expansions into account.
We know that

(nl )2 —_
= (kR) In(kR) (~2ipo;wriwi (1 + ¢ ;/c2)) (17 > )R:Z,

Ao a P poe (@3 = @he) R Jy(miR)
¢ PO.i ( T a)zA 1) KR K (KeR)
2 2 2
_ Poe (ws,i le) (w Ti wA’e)R:"(kR) |- (mR) N (keR)*
2 w?; o 8 8 )

where there are some extra terms from the Bessel function expansions. In the first line the “plus” indicates surface modes, while
the “minus” indicates the fundamental body mode. To calculate the energy inside the flux tube (Egs. (15) and (17)) we also need to
approximate some products of Bessel functions, i.e.

)2
J()(I’l]'R)2 +J; (VliR)z -1F (nlf)
P2
DR = Jo(miR) 2 (miR) = (n,;? :
1
K eR 2 _ K eR 2 —
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—In{(k.R)* /4} - In(kR)

Ko(keR) K> (keR) — K (kcR)* = (keR)? " (kR

In the first line the “minus” indicates the fundamental body mode, while the “plus” indicates surface modes. These expansion can
all be checked in Abramowitz & Stegun (1972). We now have all the ingredients needed to calculate the energy in slow sausage
wave modes in thin flux tubes. The energy inside the flux tube is given by
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where we have kept all terms of order (kR)? or lower. The “minus” indicates the fundamental body mode, while the “plus” indicates
surface modes. We notice the equipartition between kinetic and potential (i.e. the sum of both magnetic and thermal energy) energy.
The energy outside the flux tube (Eqgs. (19)) can also be calculated and we find

2 2 2 2 4 2 2 2 2
1 0.) 1 W . W - w5 . W, wy, + w w - W
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where again we have kept all terms of order (kR)* or lower. The dominant term in these energy equations is the (kR)? (— In(kR))
term. This shows that we do not find equipartition in this case since the coefficients in the kinetic and magnetic energy before the
(kR)? (= In(kR)) term are not the same. This puzzling result was further investigated numerically. We used different equilibrium
parameters with different small values of kR. We discovered a small error in the equipartition of energy of the order of 10 of
the total energy. When using the full set of equations to calculate the energy (i.e. Egs. (17) and (19)) we did find equipartition
between kinetic and potential energy. This clearly shows that there is indeed equipartition, but approximating the Bessel functions
has introduced a small error.

When taking the long wavelength limit (i.e. kR = 0) we find that Egs. (A.1) and (A.2) simplify to Egs. (24) as expected.
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