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Determining accurate plasma Doppler (line-of-sight)
velocities from spectroscopic measurements is a
challenging endeavour, especially when weak
chromospheric absorption lines are often rapidly
evolving and, hence, contain multiple spectral
components in their constituent line profiles. Here,
we present a novel method that employs machine
learning techniques to identify the underlying
components present within observed spectral lines,
before subsequently constraining the constituent
profiles through single or multiple Voigt fits. Our
method allows active and quiescent components
present in spectra to be identified and isolated for
subsequent study. Lastly, we employ a Ca II 8542 Å
spectral imaging dataset as a proof-of-concept
study to benchmark the suitability of our code for
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extracting two-component atmospheric profiles that are commonly present in sunspot
chromospheres. Minimization tests are employed to validate the reliability of the results,
achieving median reduced χ2-values equal to 1.03 between the observed and synthesized
umbral line profiles.

This article is part of the Theo Murphy meeting issue ‘High-resolution wave dynamics in
the lower solar atmosphere’.

1. Introduction
Tomographic analysis of the complex solar atmosphere and its dynamics requires the combined
use of different spectral lines (e.g. Ca II, Mg II, Lα and Hα). Indeed, due to radiative transfer
effects, these lines are formed across different heights of the solar atmosphere, with spectral
information extracted at a particular percentage line depth corresponding to differing optical
depths, and hence particular atmospheric heights [1]. Hence, it is possible to extract solar plasma
properties as a function of optical depth (and atmospheric height if radiative transfer processes
are well constrained) by taking measurements at specific percentage line depths [2].

The challenge of the solar chromosphere is that non-local thermodynamic equilibrium (non-
LTE) plays an important role in the propagation of photons through the relatively dense and
tenuous atmosphere [3]. Furthermore, due to spatial resolution limitations of even the largest-
aperture ground-based solar telescopes, and the intrinsic fine-scale structuring of the solar
atmosphere (scales smaller than 100–150 km), often the observed spectrum within the resolution
element is the superposition of several components owing to different plasma states (e.g.
both quiescent and magnetized atmospheric components). The effects of a multi-component
atmosphere are generally taken into account in state-of-the-art spectropolarimetric inversion
codes (e.g. NICOLE; [3]). However, these techniques are extremely demanding computationally.
In addition to the effects of spatial resolution, multi-components can arise from the fact that
chromospheric spectral lines sample a wide range of heights; from the mid-photosphere (wings of
the line), through to the upper chromosphere (core of the line), thus mixing very different physical
regimes [4].

Additional spectroscopic components that are superimposed on top of the quiescent
background spectral profile can arise from a wealth of solar phenomena, including dynamic
events such as magnetic reconnection, propagating waveforms, and shock development, all of
which have the ability to form across a range of atmospheric heights. This adds a secondary
component to an otherwise quiescent atmosphere [5], which is often highly Doppler-shifted
relative to the approximately stationary line core, creating a significantly broadened resultant
spectral profile. Being able to segregate the multi-component atmospheric contributions from
a spectral line would allow the simultaneous examination of both ‘dynamic’ and ‘quiescent’
regimes of the atmosphere much more readily.

One of the most dynamic and widely recognized processes that creates multi-component
chromospheric spectral lines is the propagation of magnetoacoustic waves, and their subsequent
development into shock fronts, in the umbrae of sunspots [6–11]. Such umbral oscillations
propagate energy upwards from the photosphere into the chromosphere, where the steep density
drop results in the rapid increase of the velocity amplitude in an attempt to conserve energy flux,
which is readily captured by the temperature-sensitive Ca II 8542 Å spectral line. Once the velocity
amplitude exceeds the local sound speed, the waves develop into shock fronts—a process that can
occur as low as approximately 250 km [12] through to the uppermost region of the chromosphere
[11], resulting in the production of optically thin Ca II 8542 Å emission [13]. It is this optically thin
emission that superimposes on top of the quiescent Ca II 8542 Å spectral profile, appearing in
spectroscopic observations as an almost instantaneous blue-shifted (i.e. upwardly propagating)
emission that slowly decays from its maximum intensity, providing the characteristic ‘saw-tooth’
spectral shape that is synonymous with umbral shock formation. Such spectral profile evolution
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is coupled to the underlying p-mode wave spectrum, providing a periodicity of approximately
3 min to the umbral flashes [14,15]. Attempting to fit a multi-component umbral flash spectral
profile using centre-of-gravity methods [16,17] or a single Gaussian, Lorentzian or Voigt profile
is prone to error, since it may vastly under- or over-estimate the plasma characteristics of the
developing shock. Hence, to fully understand the physics behind rapid atmospheric evolution
(including those related to umbral flashes), both components must be considered separately; not
simply modelled as a single-component atmosphere that attempts to bridge quiescent and active
states [12,14].

Doppler (line-of-sight) velocities are typically acquired from spectroscopic observations
using a number of techniques. They can be measured across a range of optical depths
by calculating, at specific percentage line depths, the spectral line bisector shift from the
central line core wavelength [2,18]. If full spectropolarimetric measurements are available, other
atmospheric parameters (such as temperature, line-of-sight magnetic flux, and magnetic field
inclination angles) can be estimated by inversion codes [19]. Such high-precision measurements
of Stokes I/Q/U/V are difficult to obtain for deep chromospheric absorption lines, including
Ca II 8542 Å, due to the relatively small rate at which photons reach the detector [20,21]. To combat
the inherently weak signal, exposure times could be increased accordingly, but this is not always
feasible when tracking the evolution of dynamic and rapidly evolving features in the lower solar
atmosphere [22]. If only Stokes I spectral observations are available, Voigt profiles [23,24] can
be fitted to the spectra. As we will discuss in §3, the Voigt profile includes enhanced spectral
wing broadening, which provides a more suitable realization of the radiative transfer effects
omnipresent throughout the lower solar atmosphere, including Doppler and pressure broadening
mechanisms [25–28]. Alternative spectral shapes, such as the Gaussian and Lorentzian profiles,
are useful when trying to represent profile shapes manifesting via different radiative transfer
effects that are often present in the spectra.

Previous studies [12] have attempted to fit complex Ca II 8542 Å line profiles using a linear
combination of two Gaussians, one for each component of the atmosphere attempting to be
modelled. Boundary conditions for each fitted profile are employed such that the first Gaussian
models an absorption component representative of the quiescent atmosphere, while the second
Gaussian models an emission component linked to the dynamic phenomenon under investigation
(e.g. magnetoacoustic shocks). This works well when two distinct components are present in an
observed line profile, yet it introduces a number of challenges when only a single absorption
component is resolved. Firstly, it takes more computational time and resources to fit the two-
profile combination than a single profile, since twice the number of fitting parameters need
to be constrained. Secondly, the boundary conditions placed on the fitted Gaussians tend to
be subjectively chosen, and therefore may subject any extracted results to a user bias. Thirdly,
the most problematic issue is the tendency for the two-profile combination to overfit the
observed data as the fitting algorithm naturally attempts to smooth out noise and asymmetries
in the observed spectra. This results in neither of the constituent profiles, by themselves,
accurately modelling the absorption components present in the spectra, and Doppler shifts
extracted from any one of the two fitted components would be potentially misleading and
incorrect.

A novel method to alleviate the degree of human interaction required when processing large
datasets hinges on the concept of machine learning, which is becoming increasingly commonplace
in the field of solar physics. Machine learning, in particular neural networks, have been used
in solar physics research from at least the early 1990s for applications such as predicting the
maximum number of sunspots during a solar cycle [29], and also predicting the number of
sunspots produced throughout the Sun’s lifetime [30]. More recently, they have been used for
predicting and detecting features on the Sun such as flares [31], coronal mass ejections [32] and
active regions on the far side of the solar surface [33]. On small spatial scales, machine learning
has been shown to play an important role in the investigation of velocity flows [34] and rapid
spectropolarimetric inversions of Stokes I/Q/U/V spectra [35]. Hence, the application of machine
learning and neural networks to the challenging problem of fitting complex spectral line profiles
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(e.g. Ca II 8542 Å) is both timely and important for the accurate study of small-scale dynamic
phenomena that are ubiquitously observed to permeate the solar atmosphere.

In this paper, we detail a method for fitting profiles to spectral lines that often contain multiple
atmospheric components. Our method uses machine learning techniques to distinguish between
spectra that have multi-component atmospheres and those that can be best represented by single
spectral fits, allowing us to adjust the model and fitting method accordingly. We also provide
a proof-of-concept study on a challenging Ca II 8542 Å spectral imaging dataset to show the
suitability of this technique for widespread usage.

2. Observations
Spectral imaging observations of active region NOAA 12149 were acquired from 14:37–17:37 UT
on 30 August 2014 using the Interferometric BIdimensional Spectrometer (IBIS; [36]) instrument at
the National Science Foundation’s Dunn Solar Telescope, New Mexico, USA. IBIS is a Fabry–Pérot
instrument able to obtain high temporal, spatial, and spectral resolution imaging spectroscopy
measurements of the solar atmosphere. The Ca II 8542 Å spectral line was chosen for our
observations, with IBIS operating in a Stokes I imaging mode (i.e. no polarimetric measurements
were acquired) in order to maximize the temporal resolution of the spectroscopic scans. The
observations obtained consisted of 2103 spectral scans using 27 non-equidistant wavelength
points sampling over a 2.4 Å window centred on the Ca II 8542 Å line core. However, for the
purposes of subsequent analysis, we focus on the central 23 wavelength points over a 1.6 Å
window centred on the Ca II 8542 Å line core. As shown in figure 1, closer wavelength spacing
was chosen around the line core to provide better quiescent profile fitting. The spatial sampling
was 0 .′′098 per pixel, and the cadence of each Ca II 8542 Å scan was 5.8 s.

A contextual continuum image of active region NOAA 12149 was acquired from the
Helioseismic and Magnetic Imager (HMI; [37]) onboard the Solar Dynamics Observatory (SDO;
[38]). This measurement was taken at the start of the IBIS spectral imaging sequence, and
once processed through standard SunPy data reduction algorithms [39,40] provided a full disk
reference image with a spatial sampling equal to 0 .′′6 per pixel. Using the HMI contextual image
to define absolute solar coordinates, the IBIS dataset was subsequently co-aligned to it using cross-
correlation techniques [41]. Figure 2 shows example images from the IBIS dataset co-aligned with
the SDO/HMI continuum.

3. Methods
Presented in this section are the details of a method which uses a neural network to classify a
spectrum based on its profile shape. A suitable spectral fitting model is then selected for the
spectrum according to its neural network classification. By accurate fitting of the chosen model,
a Doppler shift, and therefore a velocity, can be uncovered for each of the constituent spectral
components, thus allowing quiescent and dynamic parts of the atmosphere to be isolated and
studied independently.

An average quiet Sun spectrum was extracted from the dataset by averaging all of the IBIS
spectra contained within the rectangular region plotted in figure 2 across all 2103 scans. The
average quiet Sun spectrum incorporated the averaging of 70 660 800 individual spectra, with
the resulting profile plotted in figure 1. This location was chosen for constructing the quiet Sun
spectrum because it is isolated from both the sunspot umbra (where complex Ca II 8542 Å profiles
synonymous with shock formation are known to form) and the regions containing magnetic pores
and bright points that often result in enhanced Ca II 8542 Å line core emission due to the formation
of chromospheric plage [42–44]. The quiet Sun spectrum shown in figure 1 demonstrates a deep
absorption profile with no clear evidence of enhanced wing or line-core emission, and hence
forms a good ‘rest’ profile of the solar atmosphere that can be used to benchmark spectral
fluctuations resulting from dynamic Ca II 8542 Å phenomena.
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Figure 1. Plot of the average Ca ii 8542 Å spectrum taken from the quiet Sun region shown in figure 2, where the intensities,
I, have been normalized by the quiet Sun continuum intensity, Ic . Solid black markers and vertical dashed lines highlight the
23 wavelength points used in our analysis out of the 27 wavelength points that were sampled by IBIS. The vertical solid line,
emphasized by crosses, represents the stationary line core wavelength. Each spectral scan took 5.8 s to complete.

(a) Choosing a fitting profile
Observations of a spectral line corresponding to a specific atomic electron transition provide
emission and absorption signatures over a range of wavelengths (i.e. not just an infinitely narrow
feature at the wavelength associated with the transitioning electron). This increased width of the
spectral line is due to a number of effects including Doppler broadening, pressure broadening,
and Zeeman splitting [25–28]. These effects can be replicated closely by convolving a Gaussian
function with a Lorentzian profile, producing a Voigt function, V, defined by [23]

V(x; A, σ , γ ) = A
∫∞

−∞
G(u; σ )L(x − u; γ ) du, (3.1)

where A is a constant scaling for the amplitude, G(x; σ ) = exp(−x2/(2σ 2))/(σ
√

2π) is a Gaussian
function centred at zero, and L(x; γ ) = γ /(π (x2 + γ 2)) is a Lorentzian function centred at zero.
The parameters σ and γ are the standard deviations of the Gaussian and the half-width at half-
maximum of the Lorentzian, respectively. The variable of integration is u. Since the Lorentzian
and Gaussian functions are centred on zero, the variable x that is passed into the Voigt function
must first be shifted by subtracting the wavelength of the line core, x0, such that the line core
wavelength is at zero in the corresponding function. The x0 parameter must be re-added to the
fitted spectra in order to precisely account for Doppler-shifted plasma.

A linear combination of Voigt profiles was chosen to model the absorption and emission
components of the spectra, hence producing a ‘double Voigt’ model. If the chosen spectrum shows
only emission or absorption profile shapes (e.g. like shown in figure 1), then a ‘single Voigt’ model
is selected, thus avoiding the computational and overfitment drawbacks associated with multiple
component fits when not necessary. Note that a background intensity level is not included in the
generated models computed from equation (3.1) as this will be calculated and subtracted from the
spectra before fitting, as detailed in §3d(ii). By modelling the spectra with Voigt profiles instead
of just simple Gaussian functions, we can fit the spectral lines more accurately as we are also
including line wing broadening that mimics the observed spectral lines.

Single or double Voigt profiles are fitted iteratively to each spectrum until it is sufficiently
similar to the observed line profile. During the fitting process, the employed model (‘single Voigt’
or ‘double Voigt’) is statistically evaluated numerous times to monitor the level of convergence
between the synthetic and observed line profiles. It is therefore necessary for the selected model
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Figure 2. Co-aligned images of the IBIS Ca ii 8542 Å red wing (line core+1.2 Å; lower right), IBIS Ca ii 8542 Å line core (lower
left), and SDO/HMI 6173 Å continuum (middle left) intensities. The location on the solar disk of active region NOAA 12149
during the observation period is shown in the top panel using a solid black box. The solid white contour used in each of
the images represents the umbra-penumbra boundary used to isolate the umbral regions. The black rectangle displayed in
each of the lower panels encloses a quiescent region of the solar atmosphere used to determine the average quiet Sun profile
discussed in §3.

to be able to be evaluated efficiently, thereby saving computational time. The Voigt function
was implemented in Python with the convolution being carried out by a numerical integration
function, quad, provided by the scipy.integrate Python module [45,46]. An approximation
of the Voigt profile [47] was also explored. However, even though this function requires less
time to compute when compared to the numerical integration approach, the fitting methods
exhibited very slow convergence, and hence we adopted the numerical integration technique for
the remainder of our work.

We use a number of techniques to maximize the efficiency of our calculated Voigt functions.
The integrand of the Voigt function is written in the C programming language and compiled into
a shared library. This C function can then be imported into Python using the ctypes library. The
scipy.integrate numerical integration function is then able to use this more efficient function
as an integrand. We also adjust the absolute and relative error tolerances for the numerical
integration, setting them to 0.149 and 0.000149, respectively. In practical terms, this means that
the error in the raw intensity value at each wavelength point will be 0.149 for |I − IBW| ≤ 1000 and
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0.000149 × |I − IBW| for |I − IBW| > 1000, where I are the intensity values at each wavelength point
on a profile, and IBW is the blue wing (rest line core −1.2 Å) intensity value for the same profile.

Taking a typical full IBIS imaging spectral scan from our dataset, we computed the |I − IBW|
value at every intensity value across all 664 796 individual spectra in the scan. We then calculated
the error in each of the raw intensity values, I, using these computed |I − IBW| values. By dividing
each error by I, a percentage error was determined for every intensity value. Over the entire
field of view, the average percentage error was 0.00666%, with an error of 0.00739% over the
subset of wavelength points ±0.1 Å around the stationary line core. For the umbral spectra,
which have much lower IBW values, the average percentage error was 0.0179%, with an error of
0.0180% around the stationary line core. In our particular test, the maximum percentage error
across the whole scan was only 0.0488%. Given that the IBIS spectra typically have line core
and wing intensity values exceeding 1730 and 2550 detector counts, respectively, and |I − IBW|
values of 757 and 149, respectively, these values correspond to absolute intensity errors of
0.149 detector counts. As such, these small percentage error tolerances are sufficient for our
investigation.

(b) Neural network
(i) Classifying spectra

As discussed in §1, fitting a double Voigt model to all spectra introduces temporal efficiency
and overfitting problems for those that contain only a single absorption/emission component.
In these cases, a single Voigt model would be more appropriate. Our method for fitting spectral
lines employs machine learning techniques to tailor the specific model (i.e. single Voigt or double
Voigt functions) used for each spectrum sampled. This way, if a spectrum only contains a single
component atmosphere consisting of an absorption dip or an emission peak, a single Voigt profile
is fitted to the spectrum, with boundary constraints chosen objectively for such a line profile. On
the other hand, if two components are detected, one absorption and one emission component,
then a double Voigt profile is fitted, with each Voigt function appropriately constrained to fit
the absorption and emission components of the observed line profile. In order to perform this
automated task, we require a robust methodology to be able to reliably identify how many
spectral components are present in each observed spectrum.

Machine learning, specifically artificial neural networks, are used to classify the spectra based
on the amount of emission relative to absorption present in profile (see §3c for an in-depth
discussion of how this is performed). Due to the diversity of spectral profiles in our dataset,
it would have been very challenging to devise a fixed criterion that can be implemented into an
algorithm and used to produce classifications more accurately than our neural network classifier.
The neural network was trained to assign one of five classifications to each observed spectrum
(figure 3), with the assigned classification used to adjust the model employed for final fitting.
Specifically, the five classifications chosen consist of,

(0) A profile exhibiting purely absorption characteristics, with no evidence of emission or
asymmetric line wings.

(1) An absorption line profile similar to the classification ‘0’, but with evidence of a less
precise line profile minimum due to, e.g. flattening of the line core intensities.

(2) A profile that begins to show signs of embedded emission characteristics, yet the line core
intensity is still less than the continuum intensity.

(3) A line profile similar to classification ‘2’, but with enhanced emission signatures such that
the line core intensity is now just above the continuum level, and

(4) A line profile showing heightened emission that is considerably brighter than the
neighbouring continuum, hence dominating the resultant spectral profile.
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Figure 3. Plots of stacked Ca ii 8542 Å umbral line spectra grouped by their neural network classification, where the intensity
scale for each spectrum is normalized between 0 and 1 to aid visualization. A two-dimensional map (lower right) reveals the
neural network classifications for the Ca ii 8542 Å spectra present within the umbra (see contours in figure 2) for a single IBIS
spectral imaging scan. (Online version in colour.)

This classification regime was chosen as it allows key features of the spectral shape to be
identified and used to adapt the model, and it also identifies regions where the level of emission is
particularly high. The neural network infrastructure is provided by the scikit-learn Python module
[48–50]. From this package, we use the multi-layer perceptron (MLP) classifier [51] along with
the L-BFGS-B solver [52], which is a unique version of the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) solver for limited memory and boundary constrained problems.

(ii) Mathematical processes

The observed spectrum is first interpolated on to a constant wavelength grid, resulting in a
profile consisting of 33 data points. Our neural network implementation, with the multi-layer
perceptron (MLP) classifier, takes the interpolated spectrum as a one-dimensional input layer
with 33 neurons. The neural network then standardizes its input by rescaling the input vector to
range from 0 to 1. As a general overview, each of the neurons of the input layer are subsequently
connected to each of forty neurons on a single hidden layer. Finally, each neuron of the hidden
layer is connected to all of the classifications on the five neuron output layer. The classification
with the largest probability is assigned to the specific spectrum.

More specifically, each neuron–neuron connection between two layers has a weight, wij, where
i is the index of the neuron in the current layer, and j is the index of the neuron on the previous
layer. All of the neurons of the hidden and output layers have a bias, b. The input is propagated
through the neural network along the connections between neurons of adjacent layers, with the
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applied weights and biases determining the level of connectivity between the subsequent layers.
The result at each neuron is calculated using the equation

y = g

⎛
⎝∑

j

wjxj − b

⎞
⎠ , (3.2)

where xj are the outputs from previous layers, wj are their associated weights, and g represents
the activation function.

The activation function for the neurons of the hidden layer was chosen to be the rectified
linear unit function (ReLU; [53]) which is defined as f (x) = max(0, x), meaning that the neuron
only ‘activates’ and passes a non-zero value on to the next layer if its result is positive.
The output layer employed the softmax activation function, which is defined as softmax(x)i =
exp(xi)/(

∑5
k=1 exp(xk)), where i ∈ {1, 2, 3, 4, 5} are the five possible classifications that the neural

network can assign.
This equation can be extended to apply to the output of a whole layer. Firstly, the outputs

from the previous layer, xj, can be represented as a column vector, x ∈ R
n, where n is the number

of neurons in the previous layer. Secondly, the weights, wij, can be represented as a matrix, W ∈
R

m×n, where m is the number of neurons in the current layer. Importantly, the matrix of weights
between the input layer and the one hidden layer is given by W(01), and the input values are
given by x(0). Similarly, W(12) represents the matrix of weights between the hidden layer and
output layer, with x(1) representing the output of the hidden layer. The biases, b ∈ R

m, for each
neuron of the hidden layer are given by b(1), while the output layer can be represented by b(2).
The output of the neural network is therefore y ∈ R

5. As a result, a spectrum can be classified by
evaluating the following set of equations in order:

x(1) = f
(

W(01)x(0) + b(1)
)

(3.3)

and

y = softmax
(

W(12)x(1) + b(2)
)

, (3.4)

where f : R → R and softmax : R → R are the ReLU and softmax activation functions, respectively,
applied to the matrix elements. Subsequently, the spectrum is then assigned a classification
associated with the largest output neuron value. Many spectra can be classified simultaneously by
increasing the dimensions of the matrices forming tensors, which can be operated very efficiently
using graphics processing units (GPUs; [54]).

The architecture of the neural network described in this study can classify a full IBIS imaging
spectral scan, consisting of 664 796 individual spectra contained within the circular aperture of the
instrument (figure 2), in approximately 48 seconds using a single 2.10 GHz Intel Xeon CPU core.
As a result of this reasonable timeframe, porting to GPUs was not investigated in the present
study. However, with larger field-of-view sizes and more rapid cadences from upcoming next-
generation instrumentation [55], the resulting increase in data volume may require attention to
be turned towards GPUs to provide the necessary accelerated performance to implement this
technique in near real-time on next-generation datasets.

(c) Training procedure
In §3b, the weights and biases are initially unknown. For the neural network to be able to
accurately classify spectra, the optimal weights and biases must be calculated, which is achieved
by fitting the parameters of the neural network to a set of manually labelled training spectra.

The current accuracy of the neural network is quantified by a loss function, calculated using
the manually assigned classification and the classification currently being assigned by the neural
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network. The weights and biases are optimized by minimizing the value of the loss function. In
this method, we use the log-loss function

log-loss = 1
NS

∑
(y,y′)∈S

(−y log(y′) − (1 − y) log(1 − y′)
)

, (3.5)

where S is the set of ground truth labels (y), defined as either ‘0’ or ‘1’, and currently predicted
probabilities (y′) spanning a range between 0 and 1, for each classification of the spectra in the
training set. The parameter NS is the number of (y, y′) pairs in the set S.

To find the predicted probabilities for each classification, the algorithm passes the training set
of spectra through the neural network, configured with an initially random set of weights and
biases, before calculating the subsequent log-loss function. Finally, the L2 regularization term,

L2 = α

2NS

(
||W(01)||22 + ||W(12)||22

)
, (3.6)

where ||W||22 is the sum of the weight matrices squared and α is the parameter that controls the
amount of regularization, is added to the loss function. The training algorithm iteratively tries a
number of different α terms, before selecting the specific value that produces the most accurate
classifications after training.

The weights and biases that minimize the loss function are found using the L-BFGS-B quasi-
Newton minimization algorithm [52], a variant of L-BFGS. This efficient algorithm works by
finding an approximation of the Hessian matrix, which is a matrix of second derivatives of the
loss function with respect to the weights and biases. Importantly, the Hessian matrix forms part of
the quadratic term in the second-order Taylor expansion of the loss function when evaluated for
a one-dimensional vector composed of the current weights and biases. The inverse of the Hessian
matrix can also be found efficiently, which is then used to determine the step direction the vector
of weights and biases should take for minimization of the loss function.

There are two separate sets of manually labelled ground truth data, one used for training the
neural network and another used for testing its performance. By using a different set of spectra
to test the performance of the neural network, we are able to detect if the neural network is
overfitting, which would result in the test set being assigned less accurate classifications. Various
statistics are determined, including a calculation of the percentage of spectra the neural network
correctly assigned the ground truth classification.

The MLP classifier in the scikit-learn module also has a number of parameters that must be
specified before the training is carried out. These include the numbers of hidden layers and
neurons employed, the α parameter used for L2 regularization, the activation function used for
the hidden layers (ReLU), and the algorithm used to optimize the weights and biases. A neural
network consisting of a single hidden layer with 40 neurons was chosen for our study.

The L-BFGS, stochastic gradient descent (SGD) and Adam [56] optimization algorithms were
trialled. Upon successive trainings, the L-BFGS method produced trained neural networks with
the most consistent accuracy score, and hence this approach was adopted for the current study.
The accuracy score is defined as the fraction of the testing set of spectra that the neural network
successfully assigned its manually labelled classification. Our method uses the GridSearchCV

infrastructure provided by the scikit-learn module to select the best α parameter from the list
[1, 2, 3, 4, 5, 6, 7, 8, 9] × 10−5.

(i) Training with the IBIS dataset

To train and test the neural network, 200 spectra from the IBIS Ca II 8542 Å dataset introduced in
§2 were chosen at random from within the umbra. The spectra in this set are manually labelled
with a classification, providing ground truth data for training and testing purposes. The first half
of this 200 spectra dataset is used to train the neural network, while the other half is used to
test the success of the trained neural network. A subset of these spectra are separated into their
manually labelled classifications and plotted in figure 3 for visual clarity. As described in §3b(i),
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these spectra are classified based on the ratio of emission to absorption, with the extreme ends of
the scale being those spectra showing no evidence of emission (classified as ‘0’), and those spectra
with obvious emission much brighter than the neighbouring continuum (classified as ‘4’).

Following the methodology outlined in §3c, the success of the trained neural network can
be classified in terms of ‘precision’ and ‘recall’ statistics. Here, the precision is defined as the
percentage of spectra that were correctly assigned a classification, c, from all the spectra that were
also assigned the same classification by the neural network. Recall is defined as the percentage of
spectra that were correctly assigned a classification, c, out of all the spectra that should have been
assigned this specific classification according the ground truth data. For each of the classifications
(0 → 4) in ascending order, the precisions obtained were 77%, 74%, 71%, 100% and 94%. Similarly,
in terms of recall, the percentages obtained were 94%, 78%, 80%, 62% and 100%. These result in
overall averages, weighted by the number of ground truth spectra per classification, of 83% and
81% for the precision and recall parameters, respectively.

Importantly, 95% of the spectra incorrectly classified by the neural network had a deviation
of only one classification number. These performance measures suggest that the neural network
is sufficiently accurate for our purposes. Running the neural network classification algorithm
on the umbral pixels extracted from a single IBIS spectral imaging scan displays the expected
complexities associated with this type of solar feature. In particular, the lower right panel
of figure 3 displays the classifications that the trained neural network returned, revealing a
multitude of purely absorption (i.e. quiescent) and emission (i.e. active) spectra.

(d) Fitting method
The following preprocessing steps and fitting methods are applied to each spectrum of the
IBIS dataset independently. Based on the neural network processing described in §3c(i), each
spectrum is assigned a classification. Spectra that are assigned a classification of either ‘0’ or ‘1’
are fitted with a simple, single Voigt profile as described in §3a. Furthermore, spectra assigned a
classification of either ‘2’, ‘3’ or ‘4’ are modelled with double Voigt profiles. This results in spectra
with a dominant absorption component being fitted with a single quiescent atmosphere model,
whereas spectra with increasing emission components are modelled with multi-component fits
that are more representative of the dynamic atmosphere. Doppler velocity information can then
be extracted for both the quiescent and active atmospheres using the parameters inferred from
the fitted models.

As will be discussed in §3d(iii), we will further distinguish between classifications ‘0’ and
1 → 4. However, classifications 2 → 4 are processed in an identical manner. While we found
no additional benefits to distinguishing between these different classifications when fitting, we
have kept these as distinct classifications to demonstrate the adaptability of our method and to
assist with relating the spatial distribution of classifications to any dynamic features found in the
Doppler velocity measurements.

(i) Preprocessing techniques

As shown in figure 1, the spectral images acquired using IBIS consist of intensity measurements
obtained across 27 non-equidistant wavelength points. However, in our analysis we focus on
the central 23 wavelength points, providing a 1.6 Å wavelength range across the Ca II line,
allowing Doppler velocities spanning ≈ ±30 km/s to be studied. Each spectrum is interpolated
on to an equidistant wavelength grid employing a wavelength spacing of 0.05 Å. This produced
a spectrum comprising 33 equidistant wavelength samples.

The next stage is to ensure the line wings are correctly calibrated. IBIS includes a prefilter with
an FWHM of 4.6 Å centred at 8542.5 Å in order to isolate the 8542 Å signal from the other resonant
wavelengths produced by the Fabry–Pérot interferometer [26]. As a result, each profile is initially
corrected by removing the prefilter transmission response from the measured spectrum.
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(ii) Background removal

In the fitted models, a background profile is not included, and as a result the continuum intensity
is expected to be zero. The motivation for not including a background profile is to reduce the
number of free parameters, and thus make the model less computationally challenging to fit.
Hence, a constant background intensity is calculated for each spectrum by performing a boxcar
moving average of the intensities calculated 1.2 Å into the blue wing from the Ca II 8542 Å
line core over a time frame of ±2 min relative to the current scan, which is subtracted from
the spectrum before fitting with a suitable model. When processing a number of spectra over
a large field of view, the calculation of the backgrounds and their subsequent subtraction can be
vectorized, resulting in a significant computational speed improvement compared to processing
each spectrum individually. Due to the breadth of the Ca II 8542 Å line, in conjunction with the
relatively narrow wavelength range of the IBIS prefilter, it is not possible to calculate the true
continuum intensity for our dataset. As such, we approximate the continuum intensity, Ic, using
a boxcar moving average placed at the furthest blue-wing position of the IBIS spectral imaging
scans (i.e. line core −1.2 Å).

(iii) Weighted fit

In order to fit the chosen model to the spectra more accurately, we applied weights to different
parts of the spectrum. Weights are given by assigning error bars to the spectrum, which the fitting
algorithm uses when calculating goodness-of-fit parameters. As the measurement of Doppler
velocities is of paramount importance, especially for quiescent spectra classified as ‘0’ where the
Doppler shifts may be subtle, we prioritize fitting around the spectral line core. As a result, we
add larger uncertainties to the wings of the spectral line when compared to the line core, which
can be visualized in the upper panel of figure 4.

On the other hand, for spectral classifications 1 → 4, we found that the accuracy of the fit was
improved by increasing the associated uncertainties at wavelengths immediately surrounding
the wavelength of the stationary line core (see the lower panel of figure 4). This had the effect of
lowering the priority for fitting the exact shape of the peak, which was either difficult to isolate
(e.g. for classifications ‘1’ and ‘2’ shown in figure 3), or incentivized the optimization algorithms
to fit more closely the steepening gradients of the spectral line wings (e.g. for classifications ‘3’
and ‘4’ shown in figure 3) that are representative of the dynamic activity present in the spectra.

(iv) Least-squares optimization

The chosen model (i.e. either a single or double Voigt model) is fitted to the spectra using
the curve_fit function provided by the scipy.optimize Python module [45,46]. With this
function we use the Trust Region Reflective algorithm for least-squares optimization, similar to
that proposed by Branch et al. [57], which allows for bounds to be specified for the parameters
intrinsic to the model, which assists with spectral convergence.

The amplitude is bounded such that a single Voigt model must fit a negative (i.e.
absorption) amplitude, while a double Voigt model must fit one negative amplitude (representing
the quiescent atmosphere) and one positive amplitude (representing the active atmospheric
component). This helps to prevent overfitting issues described in §1.

The wavelength at the centre of the absorption Voigt profile is constrained such that it does not
deviate too far from the stationary line core wavelength. The central wavelength of the absorption
Voigt function is allowed to vary within a 0.15 Å window above and below the stationary line
core wavelength. The stationary line core wavelength is found by applying this method, without
bounds, to the average quiet Sun spectrum introduced in §2. This constrains the method to only
allow Doppler velocities in the absorption component that are ±5.27 km s−1. This helps ensure
that the model represents what is happening physically in the spectra, and does not give an
unphysical Doppler shift.
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Figure 4. Plots of the sigma profiles used toweight particular regions of the spectra during the fitting process. The top profile is
used for spectra of classification ‘0’ and has the effect of reducing the priority of fitting the wings. The bottom profile is used for
all other classifications of spectra and reduces the priority of fitting the precise shape of the spectral turning point. The vertical
dashed line represents the stationary line core wavelength that these profiles are mapped on to.

Bounds are also placed on the γ and σ parameters for the Lorentzian and Gaussian shapes that
are convolved to form the resultant Voigt profile. The bounds chosen for the γ and σ components
are 10−6 < γ or σ < 1, which allows a wide range of spectral broadening to be accounted for.
An initial guess is also supplied to the fitting function, where the central wavelength of each
constituent Voigt profile is initially set to the stationary line core wavelength. Any Voigt profiles
modelling absorption are given a negative initial amplitude that is typical for the spectra dataset,
while any Voigt profiles representing emission are given a typical positive initial amplitude. All
γ and σ initial guesses are taken to be 0.1 and 0.2, respectively.

Figure 5 shows examples of the fitting methods applied to IBIS spectra. In the left panel, the
method is applied to a spectrum containing only an absorption component and is therefore fitted
with a single Voigt model. A spectrum exhibiting a complex mix of absorption and emission is
fitted with a double Voigt model in the right panel. Both of these fitted profiles show excellent
agreement with the observed profiles, in particular, around the line core where the fitting was
prioritized.

(e) Calculating velocities
Once the quiescent and active components have been isolated, they can be studied independently
to ascertain their respective Doppler shifts. The wavelength of the line core, λobserved, for each
atmospheric component can be extracted from the parameters defining the central wavelengths of
the best-fitting constituent Voigt profiles. The ‘at rest’ line core wavelength, λstationary, is calculated
by applying the algorithm to a spatially and temporally averaged spectrum extracted from a
region containing quiet Sun, as documented in §2 (see, e.g. the rectangular quiet Sun region
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Figure 5. Examples showing the fitting methods applied to spectra with a single component atmosphere (neural network
classification ‘0’; left panel) and a multi-component atmosphere (neural network classification ‘3’; right panel). The labelled
vertical lines identify the line core wavelengths of each atmospheric component fitted, i.e. the central wavelengths of the
relevant Voigt functions. The addition of the multi-component fits (right panel) shows close agreement with the observed
profile. The grey shaded regions plotted on top of the spectra represent the sigma weighting profiles displayed in figure 4.
(Online version in colour.)

depicted in figure 2 and its average profile shown in figure 1). Doppler velocities, v, can then
be calculated by comparing the line core wavelengths of each of the atmospheric components to
the stationary wavelength via,

v (km s−1) = λobserved − λstationary

λstationary
× 300 000 (3.7)

4. Proof of concept testing with IBIS data
A proof of concept test was performed using the IBIS dataset described in §2. The spectra
across the full field of view for a single spectral imaging scan (totalling 664 796 individual
spectra) were first classified by the neural network, with the resulting classifications shown in
figure 6. Following the methods outlined in §3, Doppler velocities were computed for each fitted
absorption component, with the resulting velocity maps shown in the left panel of figure 7. If a
spectral profile required multiple profile fits (i.e. using a double Voigt model), then the resulting
Doppler velocities inferred from the emission Voigt fit are shown in the right panel of figure 7. In
particular, it can be seen in the right panel of figure 7 that many of the derived Doppler velocities
associated with dynamic phenomena appear to rapidly change between neighbouring pixels, an
effect that has been documented in previous velocity studies of the solar chromosphere [58–60].
These rapid velocity excursions appear to be closely linked to instances when the Ca II 8542 Å line
goes into emission. As a result, we believe that such discontinuities may be caused by dynamic
changes in the opacity of the plasma, resulting in shifts of the response function of the line
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bar relates to the spectral shape classified, with ‘0’ and ‘4’ representing pure absorption and emission profiles, respectively. The
umbra/penumbra boundary is highlighted using a black contour, and is consistent with that shown in figure 2. (Online version
in colour.)

caused by the source function no longer monotonically decreasing throughout the chromosphere
[9,61], and hence are not numeric artefacts. As such, we must stress that smooth velocity fields
should not necessarily be expected following the application of our techniques, especially when
examining the challenging effects of radiative transfer in the solar chromosphere.

A goodness-of-fit value was estimated at each pixel of the field of view using a modified χ2

relation

χ2 = s
ν

∑
λ∈λc

(
Ifitted
λ − Iobserved

λ

)2

Iobserved
λ

, (4.1)

where s is a scaling factor, ν is the estimated degrees of freedom, and Ifitted
λ and Iobserved

λ are the
intensity values of the fitted and observed spectra, respectively. The wavelengths over which this
calculation is performed, λc, include the wavelength closest to the stationary line core, in addition
to the 12 wavelength points either side. Thus, the central 25 wavelength points (out of 33 points
in total) were used to compute the modified χ2-statistic as this allowed for a better measure of the
goodness-of-fit around the line core. Therefore, we introduce the scaling factor, s = 33

25 , to account
for this subset of wavelength points. The degrees of freedom, ν, were calculated for each spectrum
by subtracting the number of fitted parameters (4 for single Voigt profiles and 8 for double Voigt
profiles) from the total number of wavelength points, 33. The χ2-values for all the fitted spectra
in the field of view are summarized in figure 8.

Considering the entire IBIS spectral imaging scan, the median χ2-value is χ̃2 = 2.36. When only
the modified χ2-values for the umbral locations (i.e. spectra within the white umbral contours
highlighted in figure 2) are used, the median value is χ̃2 = 1.03. The calculated median χ2-values
are close to one, suggesting that the fitting method is able to accurately constrain the observed
spectral line profiles. The accuracy is particularly good when considering umbral pixels, since
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not only is the median χ2-value particularly close to one, as can be seen in figure 8, but the tail on
the χ2-distribution for umbral spectra drops off very rapidly with increasing χ2-values.

The most computationally intensive aspect of the proof of concept testing was the fitting of
suitable Voigt models to the spectra, with the double Voigt model taking more time than the
single Voigt model. To fit a full spectral imaging scan totalling 664 796 individual spectra, with
30% being modelled using a double Voigt profile (figure 6), took 123 min running across all
16 cores on a 2.10 GHz Intel Xeon processor. As a result, processing all 2103 spectral scans from
the current IBIS dataset on a single CPU would likely take on the order of 175 days. However, the
techniques presented can be further parallelized by employing multiple CPUs, hence bringing
the entire processing time down to the order of one week or less. Furthermore, as discussed in
§3b(ii), the current algorithms may be ported across to GPUs, providing the ability to accelerate
processing performance by an order of magnitude or more.

5. Discussion
Although our primary objective for this method is to accurately constrain velocity information
within an umbral region, the method can be applied more generally to any region of a spectral
imaging dataset where a two-component atmosphere may be present. As shown in our proof
of concept test (§4), our methods can be applied to any solar region, including both dynamic
locations (umbrae, penumbrae, regions of magnetism, etc.) and those demonstrating more
quiescent behaviour (e.g. quiet Sun that is permeated by granulation). Although the set of labelled
ground truth spectra that are used to train and test the neural network are chosen from within the
umbral region, the range of spectral profile shapes encountered within the umbra (i.e. spanning
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Figure 8. Ahistogramof occurrences of themodifiedχ 2-values (derived using equation (4.1)) for a single IBIS spectral imaging
scan (top panel) is plotted in grey, which depicts the goodness-of-fits between the modelled and observed spectral profiles. In
the bottompanel, the histogram is reproduced including onlyχ 2-values for umbral pixels (as highlighted by thewhite contours
in figure 2). In each panel, the solid black lines show the cumulative distribution functions, with the highest 5.0% and 1.5% of
the calculated χ 2-values omitted from the top and bottom panels, respectively. The median χ 2-values for the entire field of
view and the umbral locations are χ̃ 2 = 2.36 and χ̃ 2 = 1.03, respectively.

pure absorption through to pure emission characteristics) are representative of many different
spectra found outside of the umbral region.

The precision and recall scores of 83% and 81%, respectively, as introduced in §3c(i), suggest
that the neural network is able to classify spectra with a reasonable degree of accuracy. Since our
method currently treats classifications ‘2’, ‘3’ and ‘4’ identically, the performance statistics can
be recalculated assuming these cases all have the same classification. This results in increased
precision and recall scores of 91% and 90%, respectively, suggesting that the performance of the
neural network is particularly well suited for our methods. Similarly, if we adjust the neural
network to distinguish between ‘emission’ (classifications ‘2’, ‘3’ and ‘4’) and ‘no emission’
(classifications ‘0’ and ‘1’), the precision and recall scores for these groupings are 96% and 95%,
respectively. With a larger set of ground truth data, perhaps including other highly dynamical
solar phenomena that often exhibit enhanced line-wing asymmetries (e.g. penumbral jets,
spicules, magnetic reconnection; [62–64]), the precision and recall scores of the neural network
could be improved yet further, even to be very close to 100%. The precision and recall values
computed here are consistent with other trained astrophysical neural networks adopted into
mainstream data processing [65,66].

The classification methods presented here (i.e. excluding the line fitment and velocity
processing) may also be useful for estimating the degree of quiescence in a particular dataset,
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where the pixel fractions related to ‘quiescent’ and ‘active’ components can be readily compared.
A similar methodology has already been applied to optimize the inversion of the He I 10830 Å
line [67], and the classification aspects of this code can be implemented into future inversions
of Ca II 8542 Å data with tools such as the Non-LTE Inversion Code using the Lorien Engine
(NICOLE; [3]). Such processing is carried out by applying only the neural network classification
procedure to the data and monitoring the relative occurrence of each of the five classifications—a
process that can be accomplished within a few minutes.

In the future, our methods could be adapted to find velocity measurements for chromospheric
jets that often demonstrate plasma motions in the range of approximately 20–40 km s−1 [68].
Another potential use case is the study of Ellerman bombs, which have been observed in the
Ca II 8542 Å line core as significant blue-shifted emission [69,70]. This blue-shifted emission is
present in other chromospheric lines, including Hα and He I 10830 Å, but not in any photospheric
lines [70]. As described above, it may be necessary to further train the neural network using a
larger set of ground truth data, including examples of enhanced line-wing asymmetries that are
synonymous with such dynamical solar phenomena.

Our method could also be extended to model a three (or more) component atmosphere by
including additional Voigt (or similar) profiles in the model and modifying the criteria that
determine how the assigned classification adjusts the fitting method. For such a technique to
produce accurate velocities, a much higher number of wavelength samples would be required,
such that the components are more clearly resolved and are therefore less blended with the
surrounding plasma. With a higher number of wavelength samples, other features, such as the
presence of double-peaked self-reversal structures in the emission components, could also be
resolved. To facilitate such future code development, attention will likely need to be turned
to the next generation of spectral imaging Fabry-Pérot instruments, in addition to slit- and
fibre-based spectropolarimeters. These revolutionary instruments, including the Visible Tunable
Filter (VTF; [71]) and the Diffraction Limited Near Infrared Spectropolarimeter (DL-NIRSP), will
soon be commissioned by the National Science Foundation’s Daniel K. Inouye Solar Telescope
(DKIST; [72]).

The ‘active’ and ‘quiescent’ components present in Stokes I observations can be isolated using
our method (e.g. figure 7). Future work to investigate passing these isolated components through
the Non-LTE Inversion Code using the Lorien Engine (NICOLE; [3]) or the CAlcium Inversion
using a Spectral ARchive (CAISAR; [73]) inversion codes would be of particular interest. Often
these inversion codes provide plasma parameter outputs based on a static atmosphere. Hence,
by treating the two atmospheric components separately, ambiguities in the inverted plasma
parameters could be minimized, since each component would be better constrained by its own
single, high-quality spectral fit. This is a timely endeavour, especially with new, high spectral
precision observations on the horizon from new telescope facilities, including DKIST.

The code is fully available for the community to download and use. Details of how to access it
are provided in appendix A.

6. Conclusion
Novel methods for accurately constraining velocity information from spectral imaging
observations have been presented. Using machine learning techniques, our methods
automatically adapt the spectral models used to fit the input spectra. Importantly, our methods
will only fit multi-component models if multiple signatures are observed in the input spectra,
hence saving time and preventing the overfitment of the data.

By modelling each atmospheric component with its own independent Voigt function, the
constituent components of the atmosphere can be isolated, both spatially and temporally. Such
techniques have a diverse range of use cases, including the applicability to upcoming DKIST
observations, as well as refining the inputs for modern inversion routines, since it enables each
atmospheric component to be studied independently.
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A proof of concept test applying this method to a challenging Ca II 8542 Å spectral imaging
dataset was presented. In this, we demonstrated both the accuracy of the method and how its
techniques can be applied more generally. Importantly, the algorithms presented are available to
the global community through regularly updated download links.
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Appendix A. Availability of the code
The methods presented in this study have been compiled into a Python package Multi-
Component Atmospheric Line Fitting (MCALF; [74]).1 This software package includes a number
of subpackages, namely,

— mcalf.models: a collection of models, built upon a common base model, for fitting
specific datasets;

— mcalf.profiles: profile functions that are used to form models;
— mcalf.visualization: a collection of functions for visualizing input and output data;

and
— mcalf.utils: a collection of utility functions used throughout.

This package provides a ‘toolkit’ that can be used to define a model optimized for a particular
dataset. A base model is provided that is suitable for any spectral imaging instrument, as well
as the custom model derived in the present study that has been optimized for the IBIS sunspot
dataset we introduce in §2. The user can easily build upon the base model using our custom
template as an example. This allows the user to apply specific bounds on the fitted parameters
and provide their own ground truth dataset of spectral shapes that they would like their neural
network to be able to distinguish between. Additional logic can also be included to interpret their
own neural network classifications and take care of the specific spectral shapes present in their
dataset.

1https://github.com/ConorMacBride/mcalf.

https://sdo.gsfc.nasa.gov
http://jsoc.stanford.edu/ajax/lookdata.html
http://www.WaLSA.team
https://github.com/ConorMacBride/mcalf
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