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ABSTRACT

We use ground-based images of high spatial and temporal resolution to search for evidence of nanoflare activity in
the solar chromosphere. Through close examination of more than 1 × 109 pixels in the immediate vicinity of an
active region, we show that the distributions of observed intensity fluctuations have subtle asymmetries. A negative
excess in the intensity fluctuations indicates that more pixels have fainter-than-average intensities compared with
those that appear brighter than average. By employing Monte Carlo simulations, we reveal how the negative excess
can be explained by a series of impulsive events, coupled with exponential decays, that are fractionally below
the current resolving limits of low-noise equipment on high-resolution ground-based observatories. Importantly,
our Monte Carlo simulations provide clear evidence that the intensity asymmetries cannot be explained by
photon-counting statistics alone. A comparison to the coronal work of Terzo et al. suggests that nanoflare activity
in the chromosphere is more readily occurring, with an impulsive event occurring every ∼360 s in a 10,000 km2

area of the chromosphere, some 50 times more events than a comparably sized region of the corona. As a result,
nanoflare activity in the chromosphere is likely to play an important role in providing heat energy to this layer of
the solar atmosphere.

Key words: methods: numerical – Sun: activity – Sun: chromosphere – Sun: flares

Online-only material: animation, color figures

1. INTRODUCTION

Magnetic reconnection is a common phenomenon within the
solar atmosphere. Its presence is often observed through explo-
sive events such as solar flares, where extreme localized heating
is generated through the conversion of magnetic energy (Priest
1986; Priest & Schrijver 1999). Large-scale flare events can be
dramatic, often releasing in excess of 1031 erg of energy during
a single event. However, the relative rarity of these phenomena
means that they cannot provide the necessary sustained heating
to maintain the multimillion degree temperatures observed in
the outer solar atmosphere. Instead, it has been suggested that
nanoflares, with an energy of approximately 1024 erg, may oc-
cur with such regularity in the vicinity of active regions that
they can provide a basal background heating (Parker 1988).
Previous work on nanoflare heating has focused on coronal ob-
servations and modeling, with spectroscopic techniques used to
investigate the scaling between the emission measure and the
temperature of coronal plasma (e.g., Klimchuk & Cargill 2001;
Bradshaw et al. 2012). These results tentatively suggest that
nanoflare heating may be responsible for a significant fraction
of the energy deposited in the outer solar atmosphere. However,
the reliability of these techniques hinges on the accuracy of the
emission measure diagnostics as well as the number of optically
thin magnetic strands superimposed along an observational line
of sight. Indeed, recent work by Cirtain et al. (2013), who em-
ployed the high-resolution sounding-rocket imager Hi–C, found
a wealth of fine-scale coronal structuring that is below the
diffraction limit of current space-based coronal observatories
during the instrument’s five-minute flight. To avoid the emis-
sion measure sensitivities to local plasma temperatures, Terzo
et al. (2011) employed direct imaging techniques and undertook
a statistical study utilizing X-ray data collected by the X-Ray
Telescope (XRT; Golub et al. 2007) on board Hinode to in-
vestigate whether the analysis of millions of pixels as a single

collective could refute or verify the presence of nanoflares in
the Sun’s corona. The authors detected a small asymmetry in
the measured intensity fluctuations, which they interpreted as
the signature of cooling plasma induced by a sequence of im-
pulsive reconnection events. Consequently, Terzo et al. (2011)
suggested that nanoflares are a universal heating process within
solar active regions. Unfortunately, the signal to noise, frame
rate, and spatial resolution of the observations were not suf-
ficient to unequivocally determine the presence of nanoflare
activity and evaluate the specific role they play in the heating of
the Sun’s outermost atmosphere.

Although the majority of recent nanoflare studies have been
dedicated to coronal emission, it is the solar chromosphere that
provides more tantalizing prospects for rapid advancements in
solar physics. In the current era, we have numerous observa-
tional facilities at our disposal that provide a wealth of high
spatial, spectral, and temporal resolution chromospheric obser-
vations. Such observatories include the ground-based Dunn and
Swedish Solar Telescopes equipped with the ROSA (Jess et al.
2010c) and CRISP (Scharmer et al. 2008) instruments, respec-
tively, alongside the space-based Hinode satellite. Of partic-
ular note is the recently launched Interface Region Imaging
Spectrograph (De Pontieu et al. 2014), which aims to bridge
the gap between traditional optical observations of the chro-
mosphere and their corresponding coronal EUV counterparts.
Even though the chromosphere is only heated to a few thou-
sand degrees above the corresponding photospheric layer, the
high densities found within the chromosphere require two to
three times more energy input to maintain its temperature when
compared to the multimillion degree coronal plasma (Withbroe
& Noyes 1977; Anderson & Athay 1989). Recent work has re-
vealed that flare signatures can be contained within the chromo-
spheric layer, supporting a wealth of low-lying impulsive events
including Ellerman bombs and Hα microflares (Ding et al.
1999; Chen et al. 2001; Jess et al. 2010a; Nelson et al. 2013).
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Furthermore, flares emit most of their radiative signatures in the
optical and UV portion of the electromagnetic spectrum (Neidig
1989; Woods et al. 2006) and as a result, the chromosphere is
also the primary energy loss region associated with such im-
pulsive events (Fletcher et al. 2011). Thus, the chromosphere
presents an ideal and previously unexplored observational plat-
form to investigate the role nanoflare activity plays in the heating
of the Sun’s dynamic atmosphere.

In this paper, we utilize high spatial and temporal resolution
observations of the solar chromosphere to investigate whether
nanoflare activity can be detected in a relatively quiet active
region, devoid of any large-scale magnetic activity. We employ
a collection of techniques previously used by Terzo et al. (2011)
to study the statistics of chromospheric intensity fluctuations and
ultimately relate the analysis of millions of individual pixels to
the detection of nanoflare events.

2. OBSERVATIONS

The observational data presented here are part of a sequence
obtained during 17:51–19:51 UT on 2011 December 10 with
the Dunn Solar Telescope at Sacramento Peak, New Mexico.
The newly commissioned Hydrogen-Alpha Rapid Dynamics
camera (HARDcam; Jess et al. 2012a) imaging system was em-
ployed to image a location surrounding active region NOAA
11372, positioned at heliocentric coordinates (71′′, 134′′), or
N07.6W04.2 in the conventional heliographic coordinate sys-
tem. HARDcam observations employed a 0.25 Å filter cen-
tered on the Hα line core (6562.8 Å) and utilized a spatial
sampling of 0 .′′138 per pixel, providing a field of view size of
71′′ × 71′′. During the observations, high-order adaptive optics
(Rimmele 2004) were used to correct wavefront deformations in
real time. The acquired images were further improved through
speckle reconstruction algorithms (Wöger et al. 2008), utilizing
35 → 1 restorations and resulting in a reconstructed cadence
of 1.78 s. Atmospheric seeing conditions remained excellent
throughout the time series. However, to ensure accurate co-
alignment, narrow-band HARDcam images were Fourier co-
registered and corrected for atmospheric warping through the
application of destretching vectors established from simulta-
neous broadband reference images (Jess et al. 2007, 2010b;
Reardon et al. 2008). Sample images incorporating all image
processing steps and including a time-averaged reference image
can be viewed in Figure 1.

3. DATA ANALYSIS AND INTERPRETATION

3.1. Observational Time Series

During the two hour duration of the observing sequence,
no large-scale eruptive phenomena (GOES A-class or above)
were observed from the active region under investigation.
Examination of a time-lapse movie of HARDcam Hα images
revealed no large-scale structural reconfigurations or periodic
motions associated with spicules (Jess et al. 2012b), fibrils
(Morton et al. 2011, 2012), or mottles (Kuridze et al. 2012).
This magnetically “locked” configuration is verified through
examination of the time-averaged Hα image displayed in the
upper right panel of Figure 1. Fine-scale structuring can still
readily be observed, even after the images have been averaged
over the entire 2 hr (4040 frames) duration of the data set,
indicating a rigid chromospheric canopy with little to no periodic
motions that would have caused intrinsic blurring in the time-
averaged image.

Following the methodology of Terzo et al. (2011), our time
series was subjected to data cleaning procedures, including
the removal of pixels with excessively low count rates, those
affected by macroscopic (i.e., Hα microflare; Jess et al. 2010a)
brightenings, and those demonstrating slow intensity variations
due to the displacement or drift of structures within the field
of view. The signal to noise of the time series was high, mostly
attributed to the low dark current provided by the Peltier-cooled,
back-illuminated CCD (Jess et al. 2010c). An average count
rate of 785 DN s−1 was present, with the darkest parts of the
sunspot umbra and the brightest regions of the chromospheric
canopy remaining above 550 DN s−1 and below 1550 DN s−1,
respectively. The time series signal-to-noise ratio (S/N) can be
calculated as S/N = μ/σN , where μ is the signal mean and σN

is the standard deviation of the noise under normal observing
conditions (Schroeder 2000; Jess et al. 2012c). The image noise
will contain contributions from both the detector readout and
pixelized photon statistics, with the standard deviation of the
former σd ≈ 4.3 DN s−1 (derived from 4000 consecutive dark
frames), while the standard deviation of the latter equated as

σp =
√

n − σ 2
d , where n is the individual pixel counts in DN s−1.

The total noise contribution is found from σN =
√

σ 2
d + σ 2

p =√
n, providing an average observational standard deviation of

≈28 DN s−1 (lower right panel of Figure 1). Thus, to estimate
the range of S/N values found in the observations, the extreme
detector counts of 550 DN s−1 and 1550 DN s−1 provide a
signal-to-noise range of S/N ≈ 23–39. As a result of the high
S/N values, no pixels within the field of view were discarded
on the basis of poor count statistics. To remove macroscopic
variations, a linear fit was performed on individual pixel light
curves, with pixels removed which had intensities reaching or
exceeding 150% of the best-fit line at any time. These accounted
for ≈0.34% (886 pixels) of the total.

Finally, pixels that displayed long-term intensity variations,
caused by either the displacement or drift of the structures
present, were removed from the field of view. To do this,
we assumed that if the fluctuations around the linear fit were
completely random and followed a binomial distribution with
0.5 probability of crossing the line of best fit at any time, then
the number of crossings due to structural displacements and/
or drifts should be smaller than the standard deviation of the
binomial distribution (Terzo et al. 2011). As a result, all pixels
were removed which had intensities that crossed the line of
best fit less than

√
(m − 1)/2 times, where m is the number

of data points. Thus, for our 2 hr time series incorporating
4040 individual time stamps, all pixels were discarded where
their respective light curves crossed the best-fit line less than
32 times. These pixels cover ≈0.34% (891 pixels) of the total
field of view. However, observations acquired in Hα may also
capture dynamic periodic phenomena, such as spicules, mottles,
and fibrils. As mentioned above, a time-lapse movie of the
observations revealed no periodic transverse motions, implying
a rigid magnetic configuration is present. However, to remove
pixels that contain even the most subtle oscillating structures,
we calculated the upper crossing threshold that would arise
as a result of features oscillating with the lowest transverse
periodicities measured in previous Hα studies. A structure
oscillating with a transverse periodicity of ≈70 s (Kuridze et al.
2012) would cross the best-fit line twice during a complete
oscillation cycle. Thus, over the 2 hr (≈7200 s) duration of the
data set, one would expect ≈205 crossings of the best-fit line.
This is a gross overestimate, as it assumes that the lifetime of an
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Figure 1. Hα core (upper left) snapshot, acquired at 17:52 UT on 2011 December 10. A time-averaged Hα core image (upper right) is generated by averaging all 4040
individual images acquired during the two hour duration of the data set. Color bars beside the two upper panels denote the image intensities in DN s−1. The lower left
panel displays the time-averaged pixel medians (normalized to their standard deviation, σ , and artificially saturated to assist the clarity of small-scale features), while
the lower right panel displays the standard deviations (in DN s−1) for the entire field of view. Red contours outline regions excluded from analysis and the axis scales
are in heliocentric coordinates, where 1′′ ≈ 725 km.

(An animation and a color version of this figure are available in the online journal.)

oscillating Hα feature is longer than the 2 hr duration of the data
set. Nevertheless, by neglecting pixels within our field of view
that cross the best-fit line less than 205 times, we only discard
≈2.98% (5477 pixels).

Following the rigorous data cleaning, more than 96.6% of
the total number of pixels remained, providing in excess of
1.02×109 individual pixels. Regions removed from subsequent
analysis are contoured in red in Figure 1. Intensity fluctuations,
dI , of the remaining pixels were computed similarly to Terzo
et al. (2011),

dI (x, y, t) = I (x, y, t) − I0(x, y, t)

σP (x, y, t)
, (1)

where I (x, y, t) is the count rate (DN s−1), I0(x, y, t) is the
value of the linear fit, and σP (x, y, t) is the photon noise
estimated as the standard deviation of the pixel light curve with
respect to the linear fit, acquired at the spatial position [x, y]

and time t. The slopes of best-fit lines for each pixel are very
small (0 ± 0.12) and as noted by Terzo et al. (2011), show no
preference for increasing or decreasing intensities. Due to each
light curve being normalized to its own respective best-fit line,
a more statistically significant distribution can be obtained by
including fluctuations over the entire field of view that are not
removed by the process of data cleaning. By definition, the mean
fluctuation for each pixel is 0. However, the upper left panel
of Figure 2 clearly displays a negative excess in the intensity
fluctuations (normalized to σP ), indicating more pixels have
fainter-than-average intensities compared with those that appear
brighter than average. Averaged over all pixels that passed
the data cleaning criteria, the measured median fluctuation is
−0.1160 ± 0.0002. The upper right panel of Figure 2 displays
the distributions of the median values themselves (normalized to
their standard deviation), computed individually at each pixel.
Again, there is a preference for the median value to be negative
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Figure 2. Upper left panel displays the distribution of observed Hα pixel intensity fluctuations for the entire field of view (red line) and for those that pass the
threshold criteria outlined in Section 3 (black line), normalized to the photon noise, σP . The upper right panel shows the distribution of median fluctuations, computed
individually for each pixel within the entire field of view (red line) and those that pass the threshold criteria (black line), both of which are normalized to their standard
deviation, σ . The remaining panels are identical to the upper distributions, but created for synthetic data sets that display fluctuations based entirely upon Poisson
noise statistics (middle) and Monte Carlo simulations of nanoflare activity (A = 20 DN s−1, dt = 360 s; lower). The blue, black, and red lines in the lower panels
represent e-folding times of τ = 37 s, 51 s, and 65 s, respectively. For each distribution, a Gaussian centered on zero with unit width is displayed as a dashed line for
reference, while the centroid offsets for individual distributions are displayed in the upper right corner of each panel.

(A color version of this figure is available in the online journal.)

with respect to the mean, indicating the presence of a widespread
and real statistical phenomenon. Here, the measured median
average for all pixels that passed the data cleaning criteria is
−0.4172 ± 0.0008. These effects can be more easily visualized
by displaying the temporally averaged median values across the
entire field of view. The lower left panel of Figure 1 displays
these values normalized to their individual standard deviations,
σ . Here, more than 63.1% (165,592 pixels) of the field of view
displays negative medians, with only 33.8% (90,870 pixels)
showing median values greater than 0.

The lower left panel of Figure 1 can be used to reveal
important information regarding what types of light curves
contribute to those pixels displaying highly negative medians.
From the definition of this image, it is clear that darker pixels
will have median values significantly below the mean value of
0. Therefore, we can select the most negative pixels and display
the resulting light curves to examine why their time-averaged
median values are so low. The upper panel of Figure 3 displays
a 500 s section of a light curve that corresponds to a pixel
with a median average of −1.575 ± 0.002 when normalized to
the standard deviation, or −7.48 ± 0.07 DN s−1 in raw units.

This light curve clearly shows a small-scale impulsive event,
with a peak rise in intensity of ∼60 DN s−1 above the mean
corresponding to a rise of ∼7% above the background. This
event is small enough to evade our initial intensity threshold of
50%, which was designed to filter out macroscopic events such
as Hα microflares, yet large enough to substantially diverge the
pixel median from the average value as a result of the impulsive
rise and gradual decay. This example is at the extreme end of the
median scale. However, smaller impulsive events, which may
be difficult if not impossible to detect by eye, may result in
less severe negative medians. A collection of pseudo-random,
impulsive events (i.e., nanoflares) that are at or below the visual
detection limit may be the cause of the overall distribution
asymmetries present in our observations.

Since our filtering thresholds only removed ≈3.4% of the
total number of pixels, a natural question arises as to what
contribution the filtered fluctuations would have on the measured
Hα distributions displayed in the upper panels of Figure 2.
To test the robustness of our methodologies, we generated
identical distributions for the entire observational field of view
(i.e., including all previously discarded pixels). The resulting
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Figure 3. 500 s duration light curve (solid black line; upper), taken from a pixel that displays a highly negative median (−1.575 ± 0.002) when normalized to the
standard deviation. Identical 500 s duration light curves for a Monte Carlo simulation with parameters τ = 51 s, A = 20 DN s−1 and dt = 360 s are displayed without
(middle) and with (lower) added photon noise. Nine-point (≈16s) running averages are displayed using solid red lines, while the dashed black and red horizontal lines
mark the light curve average (0 DN s−1) and median values, respectively. A preference for negative medians exists even when the impulsive amplitudes are lower than
the photon noise. The horizontal axes displays time from the start of the observing sequence at 17:51 UT.

(A color version of this figure is available in the online journal.)

distributions are overplotted in the upper panels of Figure 2
using solid red lines. Using the entire field of view, the observed
intensity fluctuations remain in close agreement with those
obtained using the filtered image sequence, implying significant
robustness in our chosen methodologies. Differences between
the respective distributions are incredibly subtle and most likely
difficult to identify by eye. However, there is a fractional increase
in the negative offset after including the previously discarded
pixels. This is most likely a consequence of including more
macroscopic Hα brightenings in the field of view, thus causing
the separation between the mean and median values to become
more pronounced as a result of the longer decay timescales

associated with these features (approximately three to five
minutes; Jess et al. 2010a). Furthermore, the intensity fluctuation
profile itself is marginally broader when compared to the filtered
field of view. Again, this is likely attributed to the inclusion of
more rapidly evolving and/or brightening structures within the
field of view, thus causing greater amplitude fluctuations to
be included in the far wings of the distribution. The observed
median fluctuations of the filtered and full fields of view
have almost identical negative offsets. This is most likely a
consequence of larger amplitude Hα brightenings having a
reduced occurrence rate when compared to nanoflare activity,
resulting in the peak median offset being determined solely
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by the relatively frequent nanoflares. However, as per the
intensity fluctuation distribution, the median values of the full
field of view demonstrate a slightly more broadened profile
when compared to the filtered data set. The often significantly
longer decay times associated with large-scale chromospheric
brightenings helps to further separate the statistical mean and
median values, thus contributing to more negative offsets.
Contrarily, rapidly evolving chromospheric features, from either
spicule-type transverse oscillations or Hα microflare activity
with decay times similar to that of a nanoflare (∼51 s), will help
to negate the median offset and thus contribute to more positive
values.

Interestingly, while the observed intensity fluctuations (upper
left panel of Figure 2) are predominantly negatively offset, the
positive tail of the distribution appears to remain elevated be-
yond that of the comparative Gaussian centered about zero. This
implies a degree of positive skewness to the observed distribu-
tions. To quantify this, we calculated the Fisher and Pearson
coefficients related to the distribution, finding values of 0.111
and 0.096, respectively. This is a slight degree of skewness, but
it implies that small-scale characteristics embedded within the
data are promoting a positive skew. Since we set our intensity-
filtering threshold to 50% above the line of best fit, some larger
impulsive brightenings may still be present in the data (see,
e.g., the upper panel of Figure 3). These more significant im-
pulsive events will result in contributions to larger I/σP values,
thus causing the positive tails of the distributions to stay ele-
vated over a wider range. To test this theory, we also calculated
the Fisher and Pearson coefficients for the distributions incor-
porating the entire observational field of view (i.e., including
all previously filtered pixels), with values of 0.115 and 0.099
found, respectively. These marginally inflated values indicate a
higher degree of positive skewness when more macroscopic Hα
brightenings are included in the distribution, thus strengthening
our interpretation. Lowering the intensity threshold may help
to reduce these extended tails (i.e., the skewness). However,
since we believe that nanoflare activity is of a similar magni-
tude to the Poisson noise statistics, there is a fine line between
removing very small-scale H-alpha microflare events (which
may contribute to the skewness) and cropping nanoflare activity
itself. While the number statistics present in Terzo et al. (2011)
are significantly lower than what we present here, a degree of
positive skew can also be viewed in their intensity distributions
(see, e.g., Figures 4 and 6 of Terzo et al. 2011). The authors do
not attempt to interpret this phenomenon, but it is interesting
to note that skewness appears to be a feature synonymous with
both chromospheric and coronal observations.

3.2. Monte Carlo Simulations

To investigate further, we performed a series of Monte Carlo
simulations. Following Terzo et al. (2011), we assumed as a
null hypothesis that all pixel fluctuations are solely due to
photon noise convolved with an intrinsically flat background.
To simulate this, we first created a time-averaged Hα image
by averaging all 4040 individual frames together. The resulting
emission map is shown in the upper right panel of Figure 1 and
forms the basis of our synthetic time series. A new data cube,
4040 frames in duration, is generated with an identical time-
averaged emission map occupying each time stamp. Then, we
introduce detector noise at each pixel using Poisson statistics
that have the same average fluctuation amplitudes that we
observed in the real data (lower right panel of Figure 1).
Finally, we apply the same analysis routines to our synthetic data

set, with the resulting intensity fluctuations and pixel medians
displayed in the middle left and middle right panels, respectively,
of Figure 2. Here, the measured median fluctuation is −0.0010±
0.0002, while the median average is −0.0027 ± 0.0008. Under
normal circumstances Poisson statistics introduce an degree of
asymmetry to a photon-based distribution as a result of discrete
data sampling. However, as the sample size increases, a typical
Poisson distribution becomes more Gaussian-like, and as a
result, more symmetric. Our synthetic distributions incorporate
in excess of 1.02 × 109 individual pixels and as both measured
values are very close to 0, the resulting distributions closely
follow the Gaussians of unit width overplotted (dashed line)
in the middle panels of Figure 2. Thus, the large negative
asymmetries present in the observations cannot be a direct
consequence of Poisson statistics alone.

Next, we introduced a series of impulsive rises in intensity,
followed by exponential decays, in an attempt to replicate a
typical time series dominated by nanoflare activity. We must
stress that the physics of a cooling plasma does not necessarily
follow a strict exponential decay. In reality, it is a broken
power-law distribution with different indices for evaporative and
non-evaporative processes, in addition to whether the plasma
is conductively or radiatively cooling (Antiochos & Sturrock
1978). However, we chose a more simplistic exponential decay
shape to make parameterizing the cooling and constraining the
decay time more straightforward. As performed by Terzo et al.
(2011), we allowed the impulsive events to be governed by
three distinct parameters: the amplitude, A, of the impulsive
rise; the e-folding time, τ , of the exponential decay phase; and
the average time interval between two successive perturbations,
dt . A number of small-scale impulsive events are detectable
by eye in pixel light curves that display a highly negative
median (see, e.g., the upper panel of Figure 3). Measurement
of eight individual decay phases provides τ ≈ 51 ± 14 s.
This is consistent with the chromospheric work of de Jager
(1985), although is much lower than previously used coronal
values (360 s; Terzo et al. 2011). The higher electron densities
found in the chromosphere would lead to reduced radiative
cooling timescales (Pallavicini et al. 1990), hence explaining
the difference in the value of τ between chromospheric and
coronal observations. Alternatively, the different values of τ
could be a direct consequence of the spatial resolution. A
smaller structure may be expected to evolve on faster timescales
when compared to a more sizeable feature. Therefore, one may
expect to resolve smaller and faster evolving structures in the
high-resolution chromospheric images compared to those found
in XRT observations. For the purposes of our simulations,
we fix the e-folding time to equal the value measured in our
observations (τ = 51 s).

One of the larger impulsive events that passed through our
data cleaning procedures has an amplitude of A ≈ 60 DN s−1

(upper panel of Figure 3). This event is comparatively large
and results in a very low light curve median value. As a result,
we must choose an impulsive amplitude that is significantly
below 60 DN s−1 to ensure the average median value over the
entire field of view is closer to the observational measurement of
−0.4172 ± 0.0008 when normalized to the standard deviation,
σ . As nanoflares are believed to be at (or below) the current
observational detection limit, we can choose an impulsive
amplitude similar to the standard deviation of our observational
time series, which includes fluctuations due to both detector
readout noise and small-scale solar variability. The lower right
image in Figure 1 displays the standard deviations for the entire

6



The Astrophysical Journal, 795:172 (8pp), 2014 November 10 Jess, Mathioudakis, & Keys

Table 1
Comparison between This Work and That of Terzo et al. (2011)

Parameter Current Terzo et al. (2011)
Study

Observations Optical (Hα) X-Ray (Hinode XRT)
Pixel area 512 × 512 pixels2 256 × 256 pixels2

Field-of-view 71 × 71 arcsec2 256 × 256 arcsec2

Time series duration 120 minutes 26 minutes
Frames 4040 303
Total pixels 1.06 × 109 1.99 × 107

Total pixels after data cleaning 1.02 × 109 1.11 × 107

Median fluctuation/σP (entire FOV) −0.1160 ± 0.0002 Not stated
Median/σ (entire FOV) −0.4172 ± 0.0008 −0.0258 ± 0.0004
Amplitude (A; Monte Carlo best fit) 20 DN s−1 60 DN s−1

e-folding time (τ ; Monte Carlo best fit) 51 s 360 s
Nanoflare interval (dt ; Monte Carlo best fit) 360 s 360 s

field of view and clearly shows how regions surrounding the
central sunspot have slightly higher standard deviations when
compared to those in darker, more distant locations of the
chromospheric canopy. The average standard deviation for the
entire field of view (σN ) is 28 DN s−1, which is considerably
higher than the fluctuations solely due to detector readout noise
(σd ≈ 4 DN s−1). Employing the full range of σN values
(≈23–39 DN s−1), the resulting photon noise can be computed
as σp =

√
σ 2

N − σ 2
d . This provides a photon noise estimate in

the range of σp ≈ 23–39 DN s−1, indicating the dominant noise
contribution arises directly from photon statistics. However, in
addition to traditional shot noise characteristics, we suggest the
larger standard deviations found in these locations may also be
a direct consequence of larger magnetic field concentrations in
these areas giving rise to bigger impulsive events and hence
more intensity variability. Thus, we select a series of average
amplitudes, A = 10, 15, 20, and 25 DN s−1, and create a random-
uniform distribution for each amplitude ranging from 50% to
150% (12.5–37.5 DN s−1 in the case of A = 25 DN s−1), which
then forms the selection basis of our impulsive intensity rises.
The final parameter is the average time interval between two
successive perturbations, dt . In order to compare our Monte
Carlo simulations with those computed by Terzo et al. (2011),
we selected a range of values, 180 � dt � 540 s, where each is
separated by 60 s (i.e., dt = 180, 240, 360, 420, 480, and 540 s).
For each value, a Poisson distribution centered on the chosen dt
is generated, which provides a series of successive time intervals
between adjacent impulsive events. A Poisson distribution is
chosen since each event will be triggered an integer number of
frames after the previous one. Impulsive events are then added
to the 4040 frame emission map time series, resulting in the
average pixel count rates increasing slightly as a result of the
perturbations having positive values. To ensure that individual
pixels in the simulated time series have an identical mean to
those of the actual Hα observations, a constant intensity offset
is applied to each pixel to maintain the same time-averaged
DN s−1 count rates present in the real data.

The resulting 24 time series (τ = 51 s; A = 10, 15, 20, 25
DN s−1; dt = 180, 240, 360, 420, 480, 540 s) have non-periodic
behavior, but with low-level impulsive events followed by
exponential decreasing trends (middle panel of Figure 3). These
light curves are then subjected to the addition of photon noise
according to our null-hypothesis test above and re-analyzed
using our observational routines. An example synthetic light
curve, with input parameters τ = 51 s, A = 15 DN s−1, and

dt = 180 s, is displayed in the lower panel of Figure 3. The
resulting intensity fluctuations and pixel medians for the 24 time
series were compared to the observational measurements, with
the closest match occurring for the variables τ = 51 s, A =
20 DN s−1, and dt = 360 s. The lower left and lower right
panels of Figure 2 display the best-match intensity fluctuation
and pixel median distributions. Here, the measured median
fluctuation is −0.1100 ± 0.0002, while the median average is
−0.4124 ± 0.0008.

4. CONCLUDING REMARKS

The methodology presented in this paper is based on the coro-
nal work of Terzo et al. (2011). However, our findings have a
number of key differences, with some quantified in Table 1.
First, the nanoflare amplitude used in our Monte Carlo simula-
tions produces a substantially smaller scatter in the percentage
intensity increases that result from the simulations of nanoflare
activity. For our best-fit case, we use a value of 20 DN s−1,
which gives an impulsive rise between 1–3% above the bright-
est and darkest quiescent background pixels, respectively. Terzo
et al. (2011) used A = 60 DN s−1, which produced a sub-
stantially wider range of intensity increases, of the order of
3%–200% above their brightest (∼1700 DN s−1) and darkest
(∼30 DN s−1) quiescent background pixels, respectively. This
may be a direct consequence of the relatively poor signal to noise
encountered with faint coronal X-ray observations. On the con-
trary, the high signal to noise of our HARDcam Hα observations
enables the amplitudes of potential nanoflare activity to be con-
strained to a much narrower window. Importantly, because the
nanoflare amplitude is only marginally below the observational
noise threshold, it seems likely that next-generation cameras
may be sensitive enough to temporally resolve nanoflare activ-
ity, especially if contributions due to dark current and readout
noise can be minimized. Second, the average cadence between
successive nanoflare events that provided the closest resem-
blance to our Hα observations is identical to that used by Terzo
et al. (2011). However, while the average cadence, dt = 360 s,
may be identical, the difference in spatial resolution between the
two studies is drastically different. In our current chromospheric
simulations, we require a nanoflare event approximately every
360 s over a spatial scale of ∼10,000 km2 (1 pixel). On the other
hand, the coronal simulations of Terzo et al. (2011) required a
nanoflare event approximately every 360 s over a spatial scale
of ∼525,000 km2 (1 pixel). This suggests that on comparable
spatial scales, there are ∼50 times more nanoflare events in the
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solar chromosphere compared to the corona. Third, our observed
distributions of intensity fluctuations and pixel medians (upper
panels of Figure 2) have a larger negative offset than those pre-
sented by Terzo et al. (2011). Typically, the lower impulsive
amplitudes used in our Monte Carlo simulations would reduce
the associated negative offset. However, this effect is negated
by the much shorter e-folding time, which causes the intensities
to drop back down to their quiescent value much more abruptly.
As a result, the sensitivity to small-scale impulsive events in the
(optical) chromosphere is substantially higher.

Our results suggest that nanoflare activity is readily occurring
in the solar chromosphere. The energetics associated with these
events are only fractionally below the noise threshold of our time
series and as a result, next-generation instruments with reduced
readout noise may actually be able to temporally resolve such
impulsive events. Even with a relatively small field of view size
(71′′ × 71′′), our Monte Carlo simulations suggest that over
2.5 × 106 impulsive events occur every hour. Thus, we suggest
that nanoflare heating may be a significant heating mechanism
in the solar chromosphere.
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addition to a dedicated standard grant that allowed this project
to be undertaken. M.M. is grateful to STFC for research support.
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